Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wolfram-Hubertus Zimmermann is active.

Publication


Featured researches published by Wolfram-Hubertus Zimmermann.


Nature Medicine | 2006

Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts

Wolfram-Hubertus Zimmermann; Ivan Melnychenko; Gerald Wasmeier; Michael Didié; Hiroshi Naito; Uwe Nixdorff; Andreas Hess; Lubos Budinsky; Kay Brune; Bjela Michaelis; Stefan Dhein; Alexander P. Schwoerer; Heimo Ehmke; Thomas Eschenhagen

The concept of regenerating diseased myocardium by implantation of tissue-engineered heart muscle is intriguing, but convincing evidence is lacking that heart tissues can be generated at a size and with contractile properties that would lend considerable support to failing hearts. Here we created large (thickness/diameter, 1–4 mm/15 mm), force-generating engineered heart tissue from neonatal rat heart cells. Engineered heart tissue formed thick cardiac muscle layers when implanted on myocardial infarcts in immune-suppressed rats. When evaluated 28 d later, engineered heart tissue showed undelayed electrical coupling to the native myocardium without evidence of arrhythmia induction. Moreover, engineered heart tissue prevented further dilation, induced systolic wall thickening of infarcted myocardial segments and improved fractional area shortening of infarcted hearts compared to controls (sham operation and noncontractile constructs). Thus, our study provides evidence that large contractile cardiac tissue grafts can be constructed in vitro, can survive after implantation and can support contractile function of infarcted hearts.


Circulation | 2006

Optimizing Engineered Heart Tissue for Therapeutic Applications as Surrogate Heart Muscle

Hiroshi Naito; Ivan Melnychenko; Michael Didié; Karin Schneiderbanger; Pia Schubert; Stephan Rosenkranz; Thomas Eschenhagen; Wolfram-Hubertus Zimmermann

Background— Cardiac tissue engineering aims at providing heart muscle for cardiac regeneration. Here, we hypothesized that engineered heart tissue (EHT) can be improved by using mixed heart cell populations, culture in defined serum-free and Matrigel-free conditions, and fusion of single-unit EHTs to multi-unit heart muscle surrogates. Methods and Results— EHTs were constructed from native and cardiac myocyte enriched heart cell populations. The former demonstrated a superior contractile performance and developed vascular structures. Peptide growth factor-supplemented culture medium was developed to maintain contractile EHTs in a serum-free environment. Addition of triiodothyronine and insulin facilitated withdrawal of Matrigel from the EHT reconstitution mixture. Single-unit EHTs could be fused to form large multi-unit EHTs with variable geometries. Conclusions— Simulating a native heart cell environment in EHTs leads to improved function and formation of primitive capillaries. The latter may constitute a preformed vascular bed in vitro and facilitate engraftment in vivo. Serum- and Matrigel-free culture conditions are expected to reduce immunogenicity of EHT. Fusion of single-unit EHT allows production of large heart muscle constructs that may eventually serve as optimized tissue grafts in cardiac regeneration in vivo.


PLOS ONE | 2011

Human Engineered Heart Tissue as a Versatile Tool in Basic Research and Preclinical Toxicology

Sebastian Schaaf; Aya Shibamiya; Marco Mewe; Alexandra Eder; Andrea Stöhr; Marc N. Hirt; Thomas Rau; Wolfram-Hubertus Zimmermann; Lenard Conradi; Thomas Eschenhagen; Arne Hansen

Human embryonic stem cell (hESC) progenies hold great promise as surrogates for human primary cells, particularly if the latter are not available as in the case of cardiomyocytes. However, high content experimental platforms are lacking that allow the function of hESC-derived cardiomyocytes to be studied under relatively physiological and standardized conditions. Here we describe a simple and robust protocol for the generation of fibrin-based human engineered heart tissue (hEHT) in a 24-well format using an unselected population of differentiated human embryonic stem cells containing 30–40% α-actinin-positive cardiac myocytes. Human EHTs started to show coherent contractions 5–10 days after casting, reached regular (mean 0.5 Hz) and strong (mean 100 µN) contractions for up to 8 weeks. They displayed a dense network of longitudinally oriented, interconnected and cross-striated cardiomyocytes. Spontaneous hEHT contractions were analyzed by automated video-optical recording and showed chronotropic responses to calcium and the β-adrenergic agonist isoprenaline. The proarrhythmic compounds E-4031, quinidine, procainamide, cisapride, and sertindole exerted robust, concentration-dependent and reversible decreases in relaxation velocity and irregular beating at concentrations that recapitulate findings in hERG channel assays. In conclusion this study establishes hEHT as a simple in vitro model for heart research.


Nature Medicine | 2010

Myeloperoxidase acts as a profibrotic mediator of atrial fibrillation

Volker Rudolph; René Andrié; Tanja K. Rudolph; Kai Friedrichs; Anna Klinke; Birgit Hirsch-Hoffmann; Alexander P. Schwoerer; Denise Lau; Xiaoming Fu; Karin Klingel; Karsten Sydow; Michael Didié; Anika Seniuk; Eike Christin Von Leitner; Katalin Szoecs; Jan W. Schrickel; Hendrik Treede; Ulrich Wenzel; Thorsten Lewalter; Georg Nickenig; Wolfram-Hubertus Zimmermann; Thomas Meinertz; Rainer H. Böger; Hermann Reichenspurner; Bruce A. Freeman; Thomas Eschenhagen; Heimo Ehmke; Stanley L. Hazen; Stephan Willems; Stephan Baldus

Observational clinical and ex vivo studies have established a strong association between atrial fibrillation and inflammation. However, whether inflammation is the cause or the consequence of atrial fibrillation and which specific inflammatory mediators may increase the atrias susceptibility to fibrillation remain elusive. Here we provide experimental and clinical evidence for the mechanistic involvement of myeloperoxidase (MPO), a heme enzyme abundantly expressed by neutrophils, in the pathophysiology of atrial fibrillation. MPO-deficient mice pretreated with angiotensin II (AngII) to provoke leukocyte activation showed lower atrial tissue abundance of the MPO product 3-chlorotyrosine, reduced activity of matrix metalloproteinases and blunted atrial fibrosis as compared to wild-type mice. Upon right atrial electrophysiological stimulation, MPO-deficient mice were protected from atrial fibrillation, which was reversed when MPO was restored. Humans with atrial fibrillation had higher plasma concentrations of MPO and a larger MPO burden in right atrial tissue as compared to individuals devoid of atrial fibrillation. In the atria, MPO colocalized with markedly increased formation of 3-chlorotyrosine. Our data demonstrate that MPO is a crucial prerequisite for structural remodeling of the myocardium, leading to an increased vulnerability to atrial fibrillation.


Circulation Research | 2011

Terminal Differentiation, Advanced Organotypic Maturation, and Modeling of Hypertrophic Growth in Engineered Heart Tissue

Malte Tiburcy; Michael Didié; Oliver Boy; Peter Christalla; Stephan Döker; Hiroshi Naito; Bijoy Chandapillai Karikkineth; Ali El-Armouche; Michael Grimm; Monika Nose; Thomas Eschenhagen; Anke Zieseniss; Doerthe M. Katschinski; Nazha Hamdani; Wolfgang A. Linke; Xiaoke Yin; Manuel Mayr; Wolfram-Hubertus Zimmermann

Rationale: Cardiac tissue engineering should provide “realistic” in vitro heart muscle models and surrogate tissue for myocardial repair. For either application, engineered myocardium should display features of native myocardium, including terminal differentiation, organotypic maturation, and hypertrophic growth. Objective: To test the hypothesis that 3D-engineered heart tissue (EHT) culture supports (1) terminal differentiation as well as (2) organotypic assembly and maturation of immature cardiomyocytes, and (3) constitutes a methodological platform to investigate mechanisms underlying hypertrophic growth. Methods and Results: We generated EHTs from neonatal rat cardiomyocytes and compared morphological and molecular properties of EHT and native myocardium from fetal, neonatal, and adult rats. We made the following key observations: cardiomyocytes in EHT (1) gained a high level of binucleation in the absence of notable cytokinesis, (2) regained a rod-shape and anisotropic sarcomere organization, (3) demonstrated a fetal-to-adult gene expression pattern, and (4) responded to distinct hypertrophic stimuli with concentric or eccentric hypertrophy and reexpression of fetal genes. The process of terminal differentiation and maturation (culture days 7–12) was preceded by a tissue consolidation phase (culture days 0–7) with substantial cardiomyocyte apoptosis and dynamic extracellular matrix restructuring. Conclusions: This study documents the propensity of immature cardiomyocytes to terminally differentiate and mature in EHT in a remarkably organotypic manner. It moreover provides the rationale for the utility of the EHT technology as a methodological bridge between 2D cell culture and animal models.


Circulation Research | 2013

Extracellular matrix secretion by cardiac fibroblasts: role of microRNA-29b and microRNA-30c.

Mélanie Abonnenc; Adam Nabeebaccus; Ursula Mayr; Javier Barallobre-Barreiro; Xuebin Dong; Friederike Cuello; Sumon Sur; Ignat Drozdov; Sarah R. Langley; Ruifang Lu; Konstantina Stathopoulou; Athanasios Didangelos; Xiaoke Yin; Wolfram-Hubertus Zimmermann; Ajay M. Shah; Anna Zampetaki; Manuel Mayr

Rationale: MicroRNAs (miRNAs), in particular miR-29b and miR-30c, have been implicated as important regulators of cardiac fibrosis. Objective: To perform a proteomics comparison of miRNA effects on extracellular matrix secretion by cardiac fibroblasts. Methods and Results: Mouse cardiac fibroblasts were transfected with pre-/anti-miR of miR-29b and miR-30c, and their conditioned medium was analyzed by mass spectrometry. miR-29b targeted a cadre of proteins involved in fibrosis, including multiple collagens, matrix metalloproteinases, and leukemia inhibitory factor, insulin-like growth factor 1, and pentraxin 3, 3 predicted targets of miR-29b. miR-29b also attenuated the cardiac fibroblast response to transforming growth factor-&bgr;. In contrast, miR-30c had little effect on extracellular matrix production but opposite effects regarding leukemia inhibitory factor and insulin-like growth factor 1. Both miRNAs indirectly affected cardiac myocytes. On transfection with pre–miR-29b, the conditioned medium of cardiac fibroblasts lost its ability to support adhesion of rat ventricular myocytes and led to a significant reduction of cardiac myocyte proteins (&agr;-actinin, cardiac myosin-binding protein C, and cardiac troponin I). Similarly, cardiomyocytes derived from mouse embryonic stem cells atrophied under pre–miR-29 conditioned medium, whereas pre–miR-30c conditioned medium had a prohypertrophic effect. Levels of miR-29a, miR-29c, and miR-30c, but not miR-29b, were significantly reduced in a mouse model of pathological but not physiological hypertrophy. Treatment with antagomiRs to miR-29b induced excess fibrosis after aortic constriction without overt deterioration in cardiac function. Conclusions: Our proteomic analysis revealed novel molecular targets of miRNAs that are linked to a fibrogenic cardiac phenotype. Such comprehensive screening methods are essential to define the concerted actions of miRNAs in cardiovascular disease.Rationale: MicroRNAs (miRNAs), in particular miR-29b and miR-30c, have been implicated as important regulators of cardiac fibrosis. Objective: To perform a proteomics comparison of miRNA effects on extracellular matrix secretion by cardiac fibroblasts. Methods and Results: Mouse cardiac fibroblasts were transfected with pre-/anti-miR of miR-29b and miR-30c, and their conditioned medium was analyzed by mass spectrometry. miR-29b targeted a cadre of proteins involved in fibrosis, including multiple collagens, matrix metalloproteinases, and leukemia inhibitory factor, insulin-like growth factor 1, and pentraxin 3, 3 predicted targets of miR-29b. miR-29b also attenuated the cardiac fibroblast response to transforming growth factor-β. In contrast, miR-30c had little effect on extracellular matrix production but opposite effects regarding leukemia inhibitory factor and insulin-like growth factor 1. Both miRNAs indirectly affected cardiac myocytes. On transfection with pre–miR-29b, the conditioned medium of cardiac fibroblasts lost its ability to support adhesion of rat ventricular myocytes and led to a significant reduction of cardiac myocyte proteins (α-actinin, cardiac myosin-binding protein C, and cardiac troponin I). Similarly, cardiomyocytes derived from mouse embryonic stem cells atrophied under pre–miR-29 conditioned medium, whereas pre–miR-30c conditioned medium had a prohypertrophic effect. Levels of miR-29a, miR-29c, and miR-30c, but not miR-29b, were significantly reduced in a mouse model of pathological but not physiological hypertrophy. Treatment with antagomiRs to miR-29b induced excess fibrosis after aortic constriction without overt deterioration in cardiac function. Conclusions: Our proteomic analysis revealed novel molecular targets of miRNAs that are linked to a fibrogenic cardiac phenotype. Such comprehensive screening methods are essential to define the concerted actions of miRNAs in cardiovascular disease. # Novelty and Significance {#article-title-44}


Journal of Clinical Investigation | 2013

Parthenogenetic stem cells for tissue-engineered heart repair

Michael Didié; Peter Christalla; Michael Rubart; Vijayakumar Muppala; Stephan Döker; Bernhard Unsöld; Ali El-Armouche; Thomas Rau; Thomas Eschenhagen; Alexander P. Schwoerer; Heimo Ehmke; Udo Schumacher; Sigrid Fuchs; Claudia Lange; Alexander Becker; Wen Tao; John A. Scherschel; Mark H. Soonpaa; Tao Yang; Qiong Lin; Martin Zenke; Dong Wook Han; Hans R. Schöler; Cornelia Rudolph; Doris Steinemann; Brigitte Schlegelberger; Steve Kattman; Alec D. Witty; Gordon Keller; Loren J. Field

Uniparental parthenotes are considered an unwanted byproduct of in vitro fertilization. In utero parthenote development is severely compromised by defective organogenesis and in particular by defective cardiogenesis. Although developmentally compromised, apparently pluripotent stem cells can be derived from parthenogenetic blastocysts. Here we hypothesized that nonembryonic parthenogenetic stem cells (PSCs) can be directed toward the cardiac lineage and applied to tissue-engineered heart repair. We first confirmed similar fundamental properties in murine PSCs and embryonic stem cells (ESCs), despite notable differences in genetic (allelic variability) and epigenetic (differential imprinting) characteristics. Haploidentity of major histocompatibility complexes (MHCs) in PSCs is particularly attractive for allogeneic cell-based therapies. Accordingly, we confirmed acceptance of PSCs in MHC-matched allotransplantation. Cardiomyocyte derivation from PSCs and ESCs was equally effective. The use of cardiomyocyte-restricted GFP enabled cell sorting and documentation of advanced structural and functional maturation in vitro and in vivo. This included seamless electrical integration of PSC-derived cardiomyocytes into recipient myocardium. Finally, we enriched cardiomyocytes to facilitate engineering of force-generating myocardium and demonstrated the utility of this technique in enhancing regional myocardial function after myocardial infarction. Collectively, our data demonstrate pluripotency, with unrestricted cardiogenicity in PSCs, and introduce this unique cell type as an attractive source for tissue-engineered heart repair.


Circulation Research | 2013

Patching the Heart: Cardiac Repair From Within and Outside

Lei Ye; Wolfram-Hubertus Zimmermann; Daniel J. Garry; Jianyi Zhang

Transplantation of engineered tissue patches containing either progenitor cells or cardiomyocytes for cardiac repair is emerging as an exciting treatment option for patients with postinfarction left ventricular remodeling. The beneficial effects may evolve directly from remuscularization or indirectly through paracrine mechanisms that mobilize and activate endogenous progenitor cells to promote neovascularization and remuscularization, inhibit apoptosis, and attenuate left ventricular dilatation and disease progression. Despite encouraging results, further improvements are necessary to enhance current tissue engineering concepts and techniques and to achieve clinical impact. Herein, we review several strategies for cardiac remuscularization and paracrine support that can induce cardiac repair and attenuate left ventricular dysfunction from both within and outside the myocardium.


Circulation | 2007

Development of a Biological Ventricular Assist Device Preliminary Data From a Small Animal Model

Yalin Yildirim; Hiroshi Naito; Michael Didié; Bijoy Chandapillai Karikkineth; Daniel Biermann; Thomas Eschenhagen; Wolfram-Hubertus Zimmermann

Background— Engineered heart tissue (EHT) can be generated from cardiomyocytes and extracellular matrix proteins and used to repair local heart muscle defects in vivo. Here, we hypothesized that pouch-like heart muscle constructs can be generated by using a novel EHT-casting technology and applied as heart-embracing cardiac grafts in vivo. Methods and Results— Pouch-like EHTs (inner/outer diameter: 10/12 mm) can be generated mainly from neonatal rat heart cells, collagen type I, and serum containing culture medium. They contain a dense network of connexin 43 interconnected cardiomyocytes and an endo-/epicardial surface lining composed of prolylhydroxylase positive cells. Pouch-like EHTs beat spontaneously and show contractile properties of native heart muscle including positive inotropic responses to calcium and isoprenaline. First implantation studies indicate that pouch-like EHTs can be slipped over uninjured adult rat hearts to completely cover the left and right ventricles. Fourteen days after implantation, EHT-grafts stably covered the epicardial surface of the respective hearts. Engrafted EHTs were composed of matrix and differentiated cardiac muscle as well as newly formed vessels which were partly donor-derived. Conclusions— Pouch-like EHTs can be generated with structural and functional properties of native myocardium. Implantation studies demonstrated their applicability as cardiac muscle grafts, setting the stage for an evaluation of EHT-pouches as biological ventricular assist devices in vivo.


Circulation | 2017

Defined engineered human myocardium with advanced maturation for applications in heart failure modelling and repair

Malte Tiburcy; James E. Hudson; Paul Balfanz; Susanne Schlick; Tim De Meyer; Mei-Ling Chang Liao; Elif Levent; Farah S. Raad; Sebastian Zeidler; Edgar Wingender; Johannes Riegler; Mouer Wang; Joseph D. Gold; Izhak Kehat; Erich Wettwer; Ursula Ravens; Pieterjan Dierickx; Linda W. van Laake; Marie-José Goumans; Sara Khadjeh; Karl Toischer; Gerd Hasenfuss; Larry A. Couture; Andreas Unger; Wolfgang A. Linke; Toshiyuki Araki; Benjamin G. Neel; Gordon Keller; Lior Gepstein; Joseph C. Wu

Background: Advancing structural and functional maturation of stem cell–derived cardiomyocytes remains a key challenge for applications in disease modeling, drug screening, and heart repair. Here, we sought to advance cardiomyocyte maturation in engineered human myocardium (EHM) toward an adult phenotype under defined conditions. Methods: We systematically investigated cell composition, matrix, and media conditions to generate EHM from embryonic and induced pluripotent stem cell–derived cardiomyocytes and fibroblasts with organotypic functionality under serum-free conditions. We used morphological, functional, and transcriptome analyses to benchmark maturation of EHM. Results: EHM demonstrated important structural and functional properties of postnatal myocardium, including: (1) rod-shaped cardiomyocytes with M bands assembled as a functional syncytium; (2) systolic twitch forces at a similar level as observed in bona fide postnatal myocardium; (3) a positive force-frequency response; (4) inotropic responses to &bgr;-adrenergic stimulation mediated via canonical &bgr;1- and &bgr;2-adrenoceptor signaling pathways; and (5) evidence for advanced molecular maturation by transcriptome profiling. EHM responded to chronic catecholamine toxicity with contractile dysfunction, cardiomyocyte hypertrophy, cardiomyocyte death, and N-terminal pro B-type natriuretic peptide release; all are classical hallmarks of heart failure. In addition, we demonstrate the scalability of EHM according to anticipated clinical demands for cardiac repair. Conclusions: We provide proof-of-concept for a universally applicable technology for the engineering of macroscale human myocardium for disease modeling and heart repair from embryonic and induced pluripotent stem cell–derived cardiomyocytes under defined, serum-free conditions.

Collaboration


Dive into the Wolfram-Hubertus Zimmermann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Malte Tiburcy

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Michael Didié

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Ali El-Armouche

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lukas Cyganek

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susanne Lutz

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge