Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wolfram R. Zückert is active.

Publication


Featured researches published by Wolfram R. Zückert.


Molecular Microbiology | 2006

Borrelia burgdorferi lipoproteins are secreted to the outer surface by default

Ryan J. Schulze; Wolfram R. Zückert

Borrelia spirochaetes are unique among diderm bacteria in their abundance of surface‐displayed lipoproteins, some of which play important roles in the pathogenesis of Lyme disease and relapsing fever. To identify the lipoprotein‐sorting signals in Borrelia burgdorferi, we generated chimeras between the outer surface lipoprotein OspA, the periplasmic oligopeptide‐binding lipoprotein OppAIV and mRFP1, a monomeric red fluorescent reporter protein. Localization of OspA and OppAIV point mutants showed that Borrelia lipoproteins do not follow the ‘+2’ sorting rule which targets lipoproteins to the cytoplasmic or outer membrane of Gram‐negative bacteria via the Lol pathway. Fusions of mRFP1 to short N‐terminal lipopeptides of OspA, and surprisingly OppAIV, were targeted to the spirochaetal surface. Mutagenesis of the OspA N‐terminus defined less than five N‐terminal amino acids as the minimal secretion‐facilitating signal. With the exception of negative charges, which can act as partial subsurface retention signals in certain peptide contexts, lipoprotein secretion occurs independent of N‐terminal sequence. Together, these data indicate that Borrelia lipoproteins are targeted to the bacterial surface by default, but can be retained in the periplasm by sequence‐specific signals.


Applied and Environmental Microbiology | 2009

Development of a single-plasmid-based regulatable gene expression system for Borrelia burgdorferi.

Christine R. Whetstine; Joyce G. Slusser; Wolfram R. Zückert

ABSTRACT We developed a single-plasmid-based regulatable protein expression system for Borrelia burgdorferi. Expression of a target gene is driven by Post, a hybrid B. burgdorferi ospA-tetO promoter, from a recombinant B. burgdorferi plasmid constitutively expressing TetR. The system was tested using the green fluorescent protein (GFP) as a reporter. Under noninducing conditions, recombinant B. burgdorferi cells were nonfluorescent, no GFP protein was detected, and residual, small amounts of transcript were detectable only by reverse transcription-PCR but not by Northern blot hybridization. Upon induction with anhydrotetracycline, increasing levels of GFP transcript, protein, and fluorescence were observed. This tight and titratable promoter system will be invaluable for the study of essential borrelial proteins. Since target protein, operator, and repressor are carried by a single plasmid, the systems application is independent of a particular strain background.


Journal of Bacteriology | 2011

Specificity and Role of the Borrelia burgdorferi CtpA Protease in Outer Membrane Protein Processing

Ozan S. Kumru; Ignas Bunikis; Irina Sorokina; Sven Bergström; Wolfram R. Zückert

To further characterize the function of the Borrelia burgdorferi C-terminal protease CtpA, we used site-directed mutagenesis to alter the putative CtpA cleavage site of one of its known substrates, the outer membrane (OM) porin P13. These mutations resulted in only partial blockage of P13 processing. Ectopic expression of a C-terminally truncated P13 in B. burgdorferi indicated that the C-terminal peptide functions as a safeguard against misfolding or mislocalization prior to its proteolytic removal by CtpA. In a parallel study of Borrelia burgdorferi lipoprotein sorting mechanisms, we observed a lower-molecular-weight variant of surface lipoprotein OspC that was particularly prominent with OspC mutants that mislocalized to the periplasm or contained C-terminal epitope tags. Further investigation revealed that the variant resulted from C-terminal proteolysis by CtpA. Together, these findings indicate that CtpA rather promiscuously targets polypeptides that lack structurally constrained C termini, as proteolysis appears to occur independently of a specific peptide recognition sequence. Low-level processing of surface lipoproteins such as OspC suggests the presence of a CtpA-dependent quality control mechanism that may sense proper translocation of integral outer membrane proteins and surface lipoproteins by detecting the release of C-terminal peptides.


Current Topics in Microbiology and Immunology | 2015

The leptospiral outer membrane.

David A. Haake; Wolfram R. Zückert

The outer membrane (OM) is the front line of leptospiral interactions with their environment and the mammalian host. Unlike most invasive spirochetes, pathogenic leptospires must be able to survive in both free-living and host-adapted states. As organisms move from one set of environmental conditions to another, the OM must cope with a series of conflicting challenges. For example, the OM must be porous enough to allow nutrient uptake, yet robust enough to defend the cell against noxious substances. In the host, the OM presents a surface decorated with adhesins and receptors for attaching to, and acquiring, desirable host molecules such as the complement regulator, Factor H.Factor H. On the other hand, the OM must enable leptospires to evade detection by the hosts immune system on their way from sites of invasion through the bloodstream to the protected niche of the proximal tubule. The picture that is emerging of the leptospiral OM is that, while it shares many of the characteristics of the OMs of spirochetes and Gram-negative bacteria, it is also unique and different in ways that make it of general interest to microbiologists. For example, unlike most other pathogenic spirochetes, the leptospiral OM is rich in lipopolysaccharide (LPS). Leptospiral LPS is similar to that of Gram-negative bacteria but has a number of unique structural features that may explain why it is not recognized by the LPS-specific Toll-like receptor 4 of humans. As in other spirochetes, lipoproteins are major components of the leptospiral OM, though their roles are poorly understood. The functions of transmembrane outer membrane proteins (OMPs) in many cases are better understood, thanks to homologies with their Gram-negative counterparts and the emergence of improved genetic techniques. This chapter will review recent discoveries involving the leptospiral OM and its role in leptospiral physiology and pathogenesis.


Journal of Bacteriology | 2011

Determination of Borrelia Surface Lipoprotein Anchor Topology by Surface Proteolysis

Shiyong Chen; Ozan S. Kumru; Wolfram R. Zückert

We used a surface trypsinolysis assay to probe accessibility of the membrane-proximal N-terminal tether peptides of Borrelia surface lipoproteins OspA and Vsp1. Our findings with both wild-type and mutant proteins are only compatible with the anchoring of these surface lipoproteins in the outer leaflet of the outer spirochetal membrane.


Journal of Bacteriology | 2017

Comprehensive Spatial Analysis of the Borrelia burgdorferi Lipoproteome Reveals a Compartmentalization Bias toward the Bacterial Surface

Alexander S. Dowdell; Maxwell D. Murphy; Christina Azodi; Selene K. Swanson; Laurence Florens; Shiyong Chen; Wolfram R. Zückert

The Lyme disease spirochete Borrelia burgdorferi is unique among bacteria in its large number of lipoproteins that are encoded by a small, exceptionally fragmented, and predominantly linear genome. Peripherally anchored in either the inner or outer membrane and facing either the periplasm or the external environment, these lipoproteins assume varied roles. A prominent subset of lipoproteins functioning as the apparent linchpins of the enzootic tick-vertebrate infection cycle have been explored as vaccine targets. Yet, most of the B. burgdorferi lipoproteome has remained uncharacterized. Here, we comprehensively and conclusively localize the B. burgdorferi lipoproteome by applying established protein localization assays to a newly generated epitope-tagged lipoprotein expression library and by validating the obtained individual protein localization results using a sensitive global mass spectrometry approach. The derived consensus localization data indicate that 86 of the 125 analyzed lipoproteins encoded by B. burgdorferi are secreted to the bacterial surface. Thirty-one of the remaining 39 periplasmic lipoproteins are retained in the inner membrane, with only 8 lipoproteins being anchored in the periplasmic leaflet of the outer membrane. The localization of 10 lipoproteins was further defined or revised, and 52 surface and 23 periplasmic lipoproteins were newly localized. Cross-referencing prior studies revealed that the borrelial surface lipoproteome contributing to the host-pathogen interface is encoded predominantly by plasmids. Conversely, periplasmic lipoproteins are encoded mainly by chromosomal loci. These studies close a gap in our understanding of the functional lipoproteome of an important human pathogen and set the stage for more in-depth studies of thus-far-neglected spirochetal lipoproteins.IMPORTANCE The small and exceptionally fragmented genome of the Lyme disease spirochete Borrelia burgdorferi encodes over 120 lipoproteins. Studies in the field have predominantly focused on a relatively small number of surface lipoproteins that play important roles in the transmission and pathogenesis of this global human pathogen. Yet, a comprehensive spatial assessment of the entire borrelial lipoproteome has been missing. The current study newly identifies 52 surface and 23 periplasmic lipoproteins. Overall, two-thirds of the B. burgdorferi lipoproteins localize to the surface, while outer membrane lipoproteins facing the periplasm are rare. This analysis underscores the dominant contribution of lipoproteins to the spirochetes rather complex and adaptable host-pathogen interface, and it encourages further functional exploration of its lipoproteome.


Molecular Microbiology | 2013

A call to order at the spirochaetal host–pathogen interface

Wolfram R. Zückert

As the Lyme disease spirochaete Borrelia burgdorferi shuttles back and forth between arthropod vector and vertebrate host, it encounters vastly different and hostile environments. Major mechanisms contributing to the success of this pathogen throughout this complex transmission cycle are phase and antigenic variation of abundant and serotype‐defining surface lipoproteins. These peripherally membrane‐anchored virulence factors mediate niche‐specific interactions with vector/host factors and protect the spirochaete from the perils of the mammalian immune response. In this issue of Molecular Microbiology, Tilly, Bestor and Rosa redefine the roles of two lipoproteins, OspC and VlsE, during mammalian infection. Using a variety of promoter fusions in combination with a sensitive in vivo ‘use it or lose it’ gene complementation assay, the authors demonstrate that proper sequential expression of OspC followed by VlsE indeed matters. A previously suggested general functional redundancy between these and other lipoproteins is shown to be limited and dependent on an immunodeficient experimental setting that is arguably of diminished ecological relevance. These data reinforce the notion that OspC plays a unique role during initial infection while the antigenically variant VlsE proteins allow for persistence in the mammalian host.


PLOS ONE | 2010

Interaction of Variable Bacterial Outer Membrane Lipoproteins with Brain Endothelium

Gaurav Gandhi; Diana Londoño; Christine R. Whetstine; Nilay Sethi; Kwang S. Kim; Wolfram R. Zückert; Diego Cadavid

Background Previously we reported that the variable outer membrane lipoprotein Vsp1 from the relapsing fever spirochete Borrelia turicatae disseminates from blood to brain better than the closely related Vsp2 [1]. Here we studied the interaction between Vsp1 and Vsp2 with brain endothelium in more detail. Methodology/Principal Findings We compared Vsp1 to Vsp2 using human brain microvascular endothelial cell (HBMEC) association assays with aminoacid radiolabeled Vsp-expressing clones of recombinant Borrelia burgdorferi and lanthanide-labeled purified lipidated Vsp1 (LVsp1) and Vsp2 (LVsp2) and inoculations of the lanthanide-labeled proteins into mice. The results showed that heterologous expression of LVsp1 or LVsp2 in B. burgdorferi increased its association with HBMEC to a similar degree. Purified lanthanide-labeled lipidated Vsp1 (LVsp1) and LVsp2 by themselves were capable of associating with HBMEC. The association of LVsp1 with brain endothelium was time-dependent, saturable, and required the lipidation. The association of Vsp1 with HBMEC was inhibited by incubation at lower temperature or with excess unlabeled LVsp1 or LVsp2 but not with excess rVsp1 or mouse albumin or an anti Vsp1 monoclonal antibody. The association of LVsp2 with HBMEC and its movement from blood to brain parenchyma significantly increased in the presence of LVsp1. Conclusions/Significance Variable bacterial outer membrane lipoproteins interact with brain endothelium differently; the lipidation and variable features at the protein dome region are key modulators of this interaction.


Archive | 2017

Spirochetal Lipoproteins in Pathogenesis and Immunity

David A. Haake; Wolfram R. Zückert

Lipoproteins are lipid-modified proteins that dominate the spirochetal proteome. While found in all bacteria, spirochetal lipoproteins have unique features and play critical roles in spirochete biology. For this reason, considerable effort has been devoted to determining how the lipoproteome is generated. Essential features of the structural elements of lipoproteins are now understood with greater clarity, enabling greater confidence in identification of lipoproteins from genomic sequences. The journey from the ribosome to the outer membrane, and in some cases, to the cellular surface has been defined, including secretion, lipidation, sorting, and export across the outer membrane. Given their abundance and importance, it is not surprising that spirochetes have developed a number of strategies for regulating the spatiotemporal expression of lipoproteins. In some cases, lipoprotein expression is tied to various environmental cues, while in other cases, it is linked to growth rate. This regulation enables spirochetes to express certain lipoproteins at high levels in one phase of the spirochete lifecycle, while dramatically downregulating the same lipoproteins in other phases. The mammalian host has developed specialized mechanisms for recognizing lipoproteins and triggering an immune response. Evasion of that immune response is essential for spirochete persistence. For this reason, spirochetes have developed mechanisms for altering lipoproteins. Lipoproteins recognized by antibodies formed during infection are key serodiagnostic antigens. In addition, lipoprotein vaccines have been developed for generating an immune response to control or prevent a spirochete infection. This chapter summarizes our current understanding of lipoproteins in interactions of spirochetes with their hosts.


Biochimica et Biophysica Acta | 2014

Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond.

Wolfram R. Zückert

Collaboration


Dive into the Wolfram R. Zückert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Haake

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge