Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Won-Gyu Choi is active.

Publication


Featured researches published by Won-Gyu Choi.


Trends in Plant Science | 2014

A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling

Simon Gilroy; Nobuhiro Suzuki; Gad Miller; Won-Gyu Choi; Masatsugu Toyota; Amith R. Devireddy; Ron Mittler

Systemic signaling pathways enable multicellular organisms to prepare all of their tissues and cells to an upcoming challenge that may initially only be sensed by a few local cells. They are activated in plants in response to different stimuli including mechanical injury, pathogen infection, and abiotic stresses. Key to the mobilization of systemic signals in higher plants are cell-to-cell communication events that have thus far been mostly unstudied. The recent identification of systemically propagating calcium (Ca(2+)) and reactive oxygen species (ROS) waves in plants has unraveled a new and exciting cell-to-cell communication pathway that, together with electric signals, could provide a working model demonstrating how plant cells transmit long-distance signals via cell-to-cell communication mechanisms. Here, we summarize recent findings on the ROS and Ca(2+) waves and outline a possible model for their integration.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants

Won-Gyu Choi; Masatsugu Toyota; Su-Hwa Kim; Richard Hilleary; Simon Gilroy

Significance This work documents a previously unreported plant-wide signaling system based on the rapid, long-distance transmission of Ca2+ waves. In the root these waves move through the cortical and endodermal cell layers at speeds of up to 400 µm/s, i.e., traversing several cells per second. This Ca2+ wave system correlates with the triggering of molecular responses in distant parts of the plant upon perception of localized (salt) stress. Such propagating Ca2+ waves provide a new mechanism for the rapid integration of activities throughout the plant body. Their sessile lifestyle means that plants have to be exquisitely sensitive to their environment, integrating many signals to appropriate developmental and physiological responses. Stimuli ranging from wounding and pathogen attack to the distribution of water and nutrients in the soil are frequently presented in a localized manner but responses are often elicited throughout the plant. Such systemic signaling is thought to operate through the redistribution of a host of chemical regulators including peptides, RNAs, ions, metabolites, and hormones. However, there are hints of a much more rapid communication network that has been proposed to involve signals ranging from action and system potentials to reactive oxygen species. We now show that plants also possess a rapid stress signaling system based on Ca2+ waves that propagate through the plant at rates of up to ∼400 µm/s. In the case of local salt stress to the Arabidopsis thaliana root, Ca2+ wave propagation is channeled through the cortex and endodermal cell layers and this movement is dependent on the vacuolar ion channel TPC1. We also provide evidence that the Ca2+ wave/TPC1 system likely elicits systemic molecular responses in target organs and may contribute to whole-plant stress tolerance. These results suggest that, although plants do not have a nervous system, they do possess a sensory network that uses ion fluxes moving through defined cell types to rapidly transmit information between distant sites within the organism.


Annual Review of Plant Biology | 2011

In vivo imaging of Ca2+, pH, and reactive oxygen species using fluorescent probes in plants.

Sarah J. Swanson; Won-Gyu Choi; Alexandra Chanoca; Simon Gilroy

Changes in the levels of Ca(2+), pH, and reactive oxygen species (ROS) are recognized as key cellular regulators involved in diverse physiological and developmental processes in plants. Critical to understanding how they exert such widespread control is an appreciation of their spatial and temporal dynamics at levels from organ to organelle and from seconds to many hours. With appropriate controls, fluorescent sensors can provide a robust approach with which to quantify such changes in Ca(2+), pH, and ROS in real time, in vivo. The fluorescent cellular probes available for visualization split into two broad classes: (a) dyes and (b) an increasingly diverse set of genetically encoded sensors based around green fluorescent proteins (GFPs). The GFP probes in particular can be targeted to well-defined subcellular locales, offering the possibility of high-resolution mapping of these signals within the cell.


Annual Review of Plant Biology | 2016

Rapid, Long-Distance Electrical and Calcium Signaling in Plants

Won-Gyu Choi; Richard Hilleary; Sarah J. Swanson; Su-Hwa Kim; Simon Gilroy

Plants integrate activities throughout their bodies using long-range signaling systems in which stimuli sensed by just a few cells are translated into mobile signals that can influence the activities in distant tissues. Such signaling can travel at speeds well in excess of millimeters per second and can trigger responses as diverse as changes in transcription and translation levels, posttranslational regulation, alterations in metabolite levels, and even wholesale reprogramming of development. In addition to the use of mobile small molecules and hormones, electrical signals have long been known to propagate throughout the plant. This electrical signaling network has now been linked to waves of Ca(2+) and reactive oxygen species that traverse the plant and trigger systemic responses. Analysis of cell type specificity in signal propagation has revealed the movement of systemic signals through specific cell types, suggesting that a rapid signaling network may be hardwired into the architecture of the plant.


Plant Physiology | 2016

A ROS-Assisted Calcium Wave Dependent on the AtRBOHD NADPH Oxidase and TPC1 Cation Channel Propagates the Systemic Response to Salt Stress

Matthew J. Evans; Won-Gyu Choi; Simon Gilroy; Richard J. Morris

Mathematical modeling coupled with direct measurement of Ca2+ and ROS dynamics suggest that ROS-assisted calcium-induced calcium release propagates stress-induced Ca2+ waves in plants. Plants exhibit rapid, systemic signaling systems that allow them to coordinate physiological and developmental responses throughout the plant body, even to highly localized and quickly changing environmental stresses. The propagation of these signals is thought to include processes ranging from electrical and hydraulic networks to waves of reactive oxygen species (ROS) and cytoplasmic Ca2+ traveling throughout the plant. For the Ca2+ wave system, the involvement of the vacuolar ion channel TWO PORE CHANNEL1 (TPC1) has been reported. However, the precise role of this channel and the mechanism of cell-to-cell propagation of the wave have remained largely undefined. Here, we use the fire-diffuse-fire model to analyze the behavior of a Ca2+ wave originating from Ca2+ release involving the TPC1 channel in Arabidopsis (Arabidopsis thaliana). We conclude that a Ca2+ diffusion-dominated calcium-induced calcium-release mechanism is insufficient to explain the observed wave transmission speeds. The addition of a ROS-triggered element, however, is able to quantitatively reproduce the observed transmission characteristics. The treatment of roots with the ROS scavenger ascorbate and the NADPH oxidase inhibitor diphenyliodonium and analysis of Ca2+ wave propagation in the Arabidopsis respiratory burst oxidase homolog D (AtrbohD) knockout background all led to reductions in Ca2+ wave transmission speeds consistent with this model. Furthermore, imaging of extracellular ROS production revealed a systemic spread of ROS release that is dependent on both AtRBOHD and TPC1. These results suggest that, in the root, plant systemic signaling is supported by a ROS-assisted calcium-induced calcium-release mechanism intimately involving ROS production by AtRBOHD and Ca2+ release dependent on the vacuolar channel TPC1.


Biochemistry | 2011

Arabidopsis thaliana NIP7;1: an anther-specific boric acid transporter of the aquaporin superfamily regulated by an unusual tyrosine in helix 2 of the transport pore.

Tian Li; Won-Gyu Choi; Ian S. Wallace; Jerome Baudry; Daniel M. Roberts

Plant nodulin-26 intrinsic proteins (NIPs) are members of the aquaporin superfamily that serve as multifunctional transporters of uncharged metabolites. In Arabidopsis thaliana, a specific NIP pore subclass, known as the NIP II proteins, is represented by AtNIP5;1 and AtNIP6;1, which encode channel proteins expressed in roots and leaf nodes, respectively, that participate in the transport of the critical cell wall nutrient boric acid. Modeling of the protein encoded by the AtNIP7;1 gene shows that it is a third member of the NIP II pore subclass in Arabidopsis. However, unlike AtNIP5;1 and AtNIP6;1 proteins, which form constitutive boric acid channels, AtNIP7;1 forms a channel with an extremely low intrinsic boric acid transport activity. Molecular modeling and molecular dynamics simulations of AtNIP7;1 suggest that a conserved tyrosine residue (Tyr81) located in transmembrane helix 2 adjacent to the aromatic arginine (ar/R) pore selectivity region stabilizes a closed pore conformation through interaction with the canonical Arg220 in ar/R region. Substitution of Tyr81 with a Cys residue, characteristic of established NIP boric acid channels, results in opening of the AtNIP7;1 pore that acquires a robust, transport activity for boric acid as well as other NIP II test solutes (glycerol and urea). Substitution of a Phe for Tyr81 also opens the channel, supporting the prediction from MD simulations that hydrogen bond interaction between the Tyr81 phenol group and the ar/R Arg may contribute to the stabilization of a closed pore state. Expression analyses show that AtNIP7;1 is selectively expressed in developing anther tissues of young floral buds of A. thaliana, principally in developing pollen grains of stage 9-11 anthers. Because boric acid is both an essential nutrient as well as a toxic compound at high concentrations, it is proposed that Tyr81 modulates transport and may provide an additional level of regulation for this transporter in male gametophyte development.


eLife | 2014

Plant biologists FRET over stress

Won-Gyu Choi; Simon Gilroy

Two independent research labs have developed fluorescent biosensors to report the levels of the stress hormone, abscisic acid, within cells in living plants in real-time.


Archive | 2011

Calcium, Mechanical Signaling, and Tip Growth

Won-Gyu Choi; Sarah J. Swanson; Simon Gilroy

Changes in cytosolic Ca2+ have emerged as important regulators of plant growth. During tip growth, changes in cytosolic Ca2+ appear to trigger proton fluxes and reactive oxygen species (ROS) production to the apoplast of the growing cell, likely to reinforce the wall to prevent uncontrolled expansion. In addition, ROS permeate to the cytosol to act as signals triggering a range of downstream processes, including Ca2+ channel gating. Thus, in a complex feedback process, the extent of the Ca2+ gradient at the growing tip is modulated to precisely control growth. These changes bear striking similarities to responses elsewhere in the plant to physical stimuli, where Ca2+, ROS, pH also all play roles in the mechanoresponse. Analyses of Ca2+-responsive signaling elements such as calmodulin and the CDPKs is beginning to reveal how such Ca2+ changes may be decoded to control growth. Networks of these Ca2+-response pathways tuned to “listen” to particular components of the Ca2+ signal may help explain how plants can so exquisitely integrate and entrain their responses to current environmental conditions to effect plastic development.


Oecologia | 2018

Plants eavesdrop on cues produced by snails and induce costly defenses that affect insect herbivores

John L. Orrock; Brian M. Connolly; Won-Gyu Choi; Peter W. Guiden; Sarah J. Swanson; Simon Gilroy

Although induced defenses are widespread in plants, the degree to which plants respond to herbivore kairomones (incidental chemicals that herbivores produce independent of herbivory), the costs and benefits of responding to cues of herbivory risk, and the ecological consequences of induced defenses remain unclear. We demonstrate that undamaged tomatoes, Solanum lycopersicum, induce defenses in response to a kairomone (locomotion mucus) of snail herbivores (Helix aspersa). Induced defense had significant costs and benefits for plants: plants exposed to snail mucus or a standard defense elicitor (methyl jasmonate, MeJA) exhibited slower growth, but also experienced less herbivory by an insect herbivore (Spodoptera exigua). We also find that kairomones from molluscan herbivores lead to deleterious effects on insect herbivores mediated through changes in plant defense, i.e., mucus-induced defenses of Solanum lycopersicum-reduced growth of S. exigua. These results suggest that incidental cues of widespread generalist herbivores might be a mechanism creating variation in plant growth, plant defense, and biotic interactions.


Current Opinion in Plant Biology | 2018

Sense and sensibility: the use of fluorescent protein-based genetically encoded biosensors in plants

Richard Hilleary; Won-Gyu Choi; Su-Hwa Kim; Sung Don Lim; Simon Gilroy

Fluorescent protein-based biosensors are providing us with an unprecedented, quantitative view of the dynamic nature of the cellular networks that lie at the heart of plant biology. Such bioreporters can visualize the spatial and temporal kinetics of cellular regulators such as Ca2+ and H+, plant hormones and even allow membrane transport activities to be monitored in real time in living plant cells. The fast pace of their development is making these tools increasingly sensitive and easy to use and the rapidly expanding biosensor toolkit offers great potential for new insights into a wide range of plant regulatory processes. We suggest a checklist of controls that should help avoid some of the more cryptic issues with using these bioreporter technologies.

Collaboration


Dive into the Won-Gyu Choi's collaboration.

Top Co-Authors

Avatar

Simon Gilroy

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Sarah J. Swanson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Richard Hilleary

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Masatsugu Toyota

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ron Mittler

University of North Texas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandra Chanoca

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge