Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Won-Kee Yoon is active.

Publication


Featured researches published by Won-Kee Yoon.


International Immunopharmacology | 2003

Toll-like receptor-mediated activation of B cells and macrophages by polysaccharide isolated from cell culture of Acanthopanax senticosus.

S.B. Han; Yeo Dae Yoon; H.J. Ahn; Hyung-Kyu Lee; Chang W. Lee; Won-Kee Yoon; Song-Kyu Park; Hwan Mook Kim

We investigated the mechanism of the immunomodulatory action of polysaccharide (ASP) isolated from a cell culture of Acanthopanax senticosus. ASP was found to directly increase the proliferation and differentiation of B cells, and the cytokine production of macrophage, but not the proliferation and cytokine production of T cells. Since ASP cannot penetrate the cell membrane due to its large molecular mass, such cellular activation may be caused by the surface binding of ASP to receptors expressed on B cells and macrophages. The possibility that TLRs, which are known to be involved in immune-related responses, may be the receptor(s) of ASP was investigated. The immunomodulating activities of ASP on the B cells and macrophages of C3H/HeJ mice, expressing a defective toll-like receptor (TLR)-4, were decreased versus the corresponding cells from C3H/HeN mice. In addition, the activities of ASP on B cells and macrophages were significantly reduced by treating the cells with antibodies to TLR4 and TLR2 prior to ASP, suggesting that both of them are the possible receptors of ASP. The ligation of TLRs induced by ASP was able to activate mitogen-activated protein kinases (MAPKs), such as Erk1/2, p38 and JNK, and the transcription factor NF-kappaB. Although ASP was shown to activate the TLR signaling cascades in the same manner as lipopolysaccharide (LPS), these two could be differentiated by the finding that polymyxin B (PMB), a specific inhibitor of LPS, did not significantly affect the activities of ASP on B cells and macrophages. Taken together, our results demonstrate that ASP, isolated from a cell culture of A. senticosus, activates B cells and macrophages by interacting with TLRs and leading to the subsequent activation of mitogen-activated protein kinases and NF-kappaB.


Journal of Immunology | 2010

Vitamin D3 Upregulated Protein 1 Suppresses TNF-α–Induced NF-κB Activation in Hepatocarcinogenesis

Hyo-Jung Kwon; Young-Suk Won; Hyun-Woo Suh; Jun-Ho Jeon; Suk-Ran Yoon; Jin-Woong Chung; Tae-Don Kim; Hwan-Mook Kim; Ki-Hoan Nam; Won-Kee Yoon; Dae-Ghon Kim; Jeong-Hwan Kim; Young-Sung Kim; Dae-Yong Kim; Hyoung-Chin Kim; Inpyo Choi

Vitamin D3 upregulated protein 1 (VDUP1) is a candidate tumor suppressor, the expression of which is dramatically reduced in various tumor tissues. In this study, we found that VDUP1 expression is suppressed during human hepatic carcinogenesis, and mice lacking VDUP1 are much more susceptible to diethylnitrosamine-induced hepatocarcinogenesis compared with wild type mice. VDUP1-deficient tumors proliferated significantly more than wild type tumors and had corresponding changes in the expression of key cell cycle regulatory proteins. In addition, the hepatomitogen-induced response was associated with a considerable increase in the release of TNF-α and subsequent enhancement of NF-κB activation in VDUP1-deficient mice. When cells were treated with TNF-α, the VDUP1 level was markedly reduced, concomitant with elevated NF-κB activation. Furthermore, the overexpression of VDUP1 resulted in the robust suppression of TNF-α–activated NF-κB activity via association with HDAC1 and HDAC3. These results indicate that VDUP1 negatively regulates hepatocarcinogenesis by suppressing TNF-α–induced NF-κB activation.


Archives of Pharmacal Research | 2007

Immunosuppressive effect of silibinin in experimental autoimmune encephalomyelitis

Kyungwon Min; Won-Kee Yoon; Sang Kyum Kim; Bong-Hee Kim

Silibinin is the major pharmacologically active compound of silymarin, theSilybum marianum fruit extract. Hepatoprotective activities of silibinin/silymarin are well-known, and recent studies demonstrated their anti-inflammatory and anti-carcinogenic effects which are due to inhibition of the transcription factor NF-kB. Based on this knowledge, we hypothesized that silibinin could be effective in the treatment of multiple sclerosis (MS) and so we tested its immunosuppressive effect in experimental autoimmune encephalomyelitis (EAE), the MS animal model. The process of spinal cord demyelination and inflammation were observed and T cell migration was determined by FACS analysis. The results showed that silibinin significantly reduced the histological signs of demyelination and inflammation in EAE. Since cytokines play an important role in inflammatory disease, the proliferative response and cytokine production were examined in lymphocytes from spleens and lymph nodes. We demonstrated that silibinin Ag-nonspecifically down-regulated the secretion of pro-inflammatory Th1 cytokines and up-regulated the anti-inflammatory Th2 cytokinesin vitro. Silibinin also dose-dependently inhibited the production of Th1 cytokines exvivo. These results indicate that silibinin is both immunosuppressive and immunomodulatory.


Journal of Hepatology | 2011

Vitamin D3 up-regulated protein 1 deficiency accelerates liver regeneration after partial hepatectomy in mice.

Hyojung Kwon; Young-Suk Won; Yeo-Dae Yoon; Won-Kee Yoon; Ki-Hoan Nam; Inpyo Choi; Dae-Yong Kim; Hyoung-Chin Kim

BACKGROUND & AIMSnLiver regeneration is a complicated process involving a variety of interacting factors. Vitamin D3 up-regulated protein 1 (VDUP1) is a potent growth suppressor that, upon over-expression, inhibits tumor cell proliferation and cell-cycle progression. Here, we investigated the function of VDUP1 in liver regeneration following hepatectomy in mice.nnnMETHODSnLiver regeneration after 70% partial hepatectomy (PH) was compared in VDUP1 knockout (KO) and wild-type (WT) mice, and the activities of proliferative- and cell-cycle-related signaling pathways were measured.nnnRESULTSnCompared with WT mice, liver recovery was significantly accelerated in VDUP1 KO mice during the first day after PH, in association with increased DNA synthesis. Consistent with this observation, the expression levels of key cell-cycle regulatory proteins, including cyclin D, cyclin E, cyclin-dependent kinase 4 (CDK4), p21, and p27, were markedly altered in the livers of VDUP1 KO mice. Induction of growth factors and activation of proliferative signaling pathway components including extracellular signal-regulated kinase 1/2 (ERK1/2), Akt, glycogen synthase kinase 3β (GSK3β), mammalian target of rapamycin (mTOR), and p70S6 kinase (p70(S6K)), occurred much earlier and to a greater extent in VDUP1 KO mouse livers. In addition, primary hepatocytes isolated from VDUP1 KO mice displayed increased activation of ERK1/2 and Akt in response to HGF and TGF-α.nnnCONCLUSIONSnOur results reveal an important role for VDUP1 in the regulation of proliferative signaling during liver regeneration. Altered activation of genes involved in ERK1/2 and Akt signaling pathways may explain the accelerated growth responses seen in VDUP1 KO mice.


Toxicology and Applied Pharmacology | 2010

The role of osteopontin in d-galactosamine-induced liver injury in genetically obese mice.

Hyojung Kwon; Young-Suk Won; Won-Kee Yoon; Ki-Hoan Nam; Dae-Yong Kim; Hyoung-Chin Kim

Various epidemiological studies have shown that obesity increases the risk of liver disease, but the precise mechanisms through which this occurs are poorly understood. In the present study, we hypothesized that osteopontin (OPN), an extracellular matrix and proinflammatory cytokine, has an important role in making obese mice more susceptible to inflammatory liver injury. After exposure of genetically obese ob/ob and db/db mice to a single dose of d-galactosamine (GalN), the plasma liver enzyme levels, histology and expression levels of cytokines and OPN were evaluated. The ob/ob and db/db mice, which were more sensitive to GalN-induced inflammatory liver injury compared with wild-type mice, had significantly higher plasma and hepatic OPN expression levels. Increased OPN expression was mainly found in hepatocytes and inflammatory cells and was correlated with markedly up-regulated interleukin (IL)-12 and IL-18 levels. Furthermore, pretreatment with a neutralizing OPN (nOPN) antibody attenuated the GalN-induced inflammatory liver injury in ob/ob and db/db mice, which was accompanied by significantly reduced macrophages recruitment and IL-12 and IL-18 productions. Taken together, these results suggest that up-regulated OPN expression is a contributing factor to increased susceptibility of genetically obese mice to GalN-induced liver injury by promoting inflammation and modulating immune response.


Environmental Toxicology and Pharmacology | 2015

Time-course and molecular mechanism of hepatotoxicity induced by 1,3-dichloro-2-propanol in rats

In-Chul Lee; Je-Won Ko; Sung-Hwan Kim; In-Sik Shin; Og-Sung Moon; Won-Kee Yoon; Hyoung-Chin Kim; Jong-Choon Kim

This study investigated the time-course of 1,3-dichloro-2-propanol (1,3-DCP)-induced hepatotoxicity and the molecular mechanism of its oxidative stress and apoptotic changes in rats. Thirty-six male rats were randomly assigned to six groups of six rats each and were administered a single oral dose of 1,3-DCP (90 mg/kg) or its vehicle. 1,3-DCP caused acute hepatic damage, as evidenced by marked increases in serum aminotransferase, alkaline phosphatase, and histopathological alterations. These functional and histopathological changes in the liver peaked at 12h after administration and then decreased progressively. Oxidative stress indices were increased significantly at 6h, peaked at 12h, and then decreased progressively. The number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)- and caspase-3-positive cells increased after 6h, peaked at 12 and 24h, and then decreased. The protein levels of phosphorylated mitogen-activated protein kinases (MAPKs) including p-Erk1/2 and p-JNK showed a similar trend to the numbers of TUNEL- and caspase-3-positive cells. These results indicate that 1,3-DCP increases oxidative stress, nuclear translocation of Nrf2, and expression of Nrf2-targeted genes, followed by increased functional and histopathological alterations in the liver. The increase in hepatocellular apoptosis induced by 1,3-DCP may be related to oxidative stress-mediated MAPK activation.


Toxicology and Applied Pharmacology | 2010

The role of vitamin D3 upregulated protein 1 in thioacetamide-induced mouse hepatotoxicity

Hyojung Kwon; Jong-Hwan Lim; Jong-Tak Han; Sae-Bhom Lee; Won-Kee Yoon; Ki-Hoan Nam; Inpyo Choi; Dae-Yong Kim; Young-Suk Won; Hyoung-Chin Kim

Thioacetamide (TA) is a commonly used drug that can trigger acute hepatic failure (AHF) through generation of oxidative stress. Vitamin D3 upregulated protein 1 (VDUP1) is an endogenous inhibitor of thioredoxin, a ubiquitous thiol oxidoreductase, that regulates cellular redox status. In this study, we investigated the role of VDUP1 in AHF using a TA-induced liver injury model. VDUP1 knockout (KO) and wild-type (WT) mice were subjected to a single intraperitoneal TA injection, and various parameters of hepatic injury were assessed. VDUP1 KO mice displayed a significantly higher survival rate, lower serum alanine aminotransferase and aspartate aminotransferase levels, and less hepatic damage, compared to WT mice. In addition, induction of apoptosis was decreased in VDUP1 KO mice, with the alteration of caspase-3 and -9 activities, Bax-to-Bcl-2 expression ratios, and mitogen activated protein kinase (MAPK) signaling pathway. Importantly, analysis of TA bioactivation revealed lower plasma clearance of TA and covalent binding of [¹⁴C]TA to liver macromolecules in VDUP1 KO mice. Furthermore, the level of oxidative stress was significantly less in VDUP1 KO mice than in their WT counterparts, as evident from lipid peroxidation assay. These results collectively indicate that VDUP1 deficiency protects against TA-induced acute liver injury via lower bioactivation of TA and antioxidant effects.


European Journal of Pharmacology | 2011

KR33426, [2-(2,5-dichlorophenyl)-5-methyloxazol-4yl]carbonylguanidine, is a novel compound to be effective on mouse systemic lupus erythematosus

Geun-Hee Lee; Jin-Mi Oh; Hyun-Sun Kim; Won-Kee Yoon; Kyu Yang Yi; Young Yang; Seung Hyun Han; Sun-Kyung Lee; Eun-Yi Moon

B cell-activating factor (BAFF) is a key regulator of B lymphocyte development. Signals from BAFF are transmitted through binding to a specific BAFF receptor (BAFF-R). Here, we established screening method to find a specific inhibitor for the interference of BAFF-BAFF-R interactions. We screened oxazole-4-carbonylguanidine derivatives and selected KR33426, [2-(2,5-dichlorophenyl)-5-methyloxazol-4yl]carbonylguanidine, as a candidate to interfere BAFF-BAFF-R interactions. KR33426 inhibited BAFF-mediated anti-apoptotic effect on splenocytes as judged by hypodiploid cell formation. KR33426 also increased the degradation of procaspase-3 that was inhibited by BAFF protein. In addition, we examined whether KR33426 was effective on the treatment of systemic lupus erythematosus-like symptom in MRL(lpr/lpr) mouse. When 5 or 10mg/kg KR33426 was intraperitoneally administered to MRL(lpr/lpr) mice for 4 weeks, histopathological changes were ameliorated in the narrowed space between renal glomerulus and glomerulus capsule. KR33426 reduced B220(+) B cell population and B cell mitogen, lipopolysaccharide-stimulated lymphocyte proliferation in splenocytes. KR33426 attenuated an increase in CD43(-)IgM(+) immature pro-B and a decrease in CD21(+) IgM(+) T2-B and IgD(+) IgM(-)recirculating-B cells on B cell development. Data show that KR33426 inhibits BAFF-BAFF-R interactions and it is effective on the treatment of systemic lupus erythematosus-like symptom in MRL(lpr/lpr) mice. Thus, it suggests that KR33426 is a novel candidate to develop anti-autoimmune therapeutics by the interference of BAFF-BAFF-R interactions, specifically.


Experimental Biology and Medicine | 2018

Fryl deficiency is associated with defective kidney development and function in mice

Yong-Sub Byun; Eun-Kyoung Kim; Kimi Araki; Ken Ichi Yamamura; Ki Hoon Lee; Won-Kee Yoon; Young-Suk Won; Hyoung-Chin Kim; Kyung-Chul Choi; Ki-Hoan Nam

FRY like transcription coactivator (Fryl) gene located on chromosome 5 is a paralog of FRY microtubule binding protein (Fry) in vertebrates. It encodes a protein with unknown functions. Fryl gene is conserved in various species ranging from eukaryotes to human. Although there are several reports on functions of Fry gene, functions of Fryl gene remain unclear. A mouse line containing null mutation in Fryl gene by gene trapping was produced in this study for the first time. The survival and growth of Fryl−/− mice were observed. Fryl gene expression levels in mouse tissues were determined and histopathologic analyses were conducted. Most Fryl−/− mice died soon after birth. Rare Fryl−/− survivors showed growth retardation with significantly lower body weight compared to their littermate controls. Although they could breed, more than half of Fryl−/− survivors died of hydronephrosis before age 1. No abnormal histopathologic lesion was apparent in full-term embryo or adult tissues except the kidney. Abnormal lining cell layer detachments from walls of collecting and convoluted tubules in kidneys were apparent in Fryl−/− neonates and full-term embryos. Fryl gene was expressed in renal tubular tissues including the glomeruli and convoluted and collecting tubules. This indicates that defects in tubular systems are associated with Fryl functions and death of Fryl−/− neonates. Fryl protein is required for normal development and functional maintenance of kidney in mice. This is the first report of in vivo Fryl gene functions. Impact statement FRY like transcription coactivator (Fryl) gene is conserved in various species ranging from eukaryotes to human. It expresses a protein with unknown function. We generated a Fryl gene mutant mouse line and found that most homozygous mice died soon after their birth. Rare Fryl−/− survivors showed growth retardation with significantly lower body weight compared to their littermate controls. Although they could breed, more than half of Fryl−/− survivors died of hydronephrosis before age 1. Full-term mutant embryos showed abnormal collecting and convoluted tubules in kidneys where Fryl gene was expressed. Collectively, these results indicate that Fryl protein is required for normal development and functional maintenance of kidney in mice. To the best of our knowledge, this is the first report on in vivo Fryl gene functions.


Journal of Veterinary Science | 2013

Vitamin D3 up-regulated protein 1 controls the priming phase of liver regeneration.

Hyo-Jung Kwon; Sung-Kuk Hong; Won-Kee Yoon; Ki-Hoan Nam; Inpyo Choi; Dae-Yong Kim; Hyoung-Chin Kim; Young-Suk Won

Vitamin D3 up-regulated protein 1 (VDUP1) is a potent growth suppressor that inhibits tumor cell proliferation and cell cycle progression when overexpressed. In a previous study, we showed that VDUP1 knockout (KO) mice exhibited accelerated liver regeneration because such animals could effectively control the expression of cell cycle regulators that drive the G1-to-S phase progression. In the present study, we further investigated the role played by VDUP1 in initial priming of liver regeneration. To accomplish this, VDUP1 KO and wild-type (WT) mice were subjected to 70% partial hepatectomy (PH) and sacrificed at different times after surgery. The hepatic levels of TNF-α and IL-6 increased after PH, but there were no significant differences between VDUP1 KO and WT mice. Nuclear factor-κB (NF-κB), c-Jun-N-terminal kinase (JNK), and signal transducer and activator of transcription 3 (STAT-3) were activated much earlier and to a greater extent in VDUP1 KO mice after PH. A single injection of TNF-α or IL-6 caused rapid activation of JNK and STAT-3 expression in both mice, but the responses were stronger and more sustained in VDUP1 KO mice. In conclusion, our findings provide evidence that VDUP1 plays a role in initiation of liver regeneration.

Collaboration


Dive into the Won-Kee Yoon's collaboration.

Top Co-Authors

Avatar

Hyoung-Chin Kim

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Young-Suk Won

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Ki-Hoan Nam

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Dae-Yong Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hwan-Mook Kim

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Inpyo Choi

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Hyo-Jung Kwon

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Hyojung Kwon

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Sae-Bhom Lee

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Jong-Tak Han

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Researchain Logo
Decentralizing Knowledge