Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wonjoon Choi is active.

Publication


Featured researches published by Wonjoon Choi.


Nature Materials | 2010

Chemically driven carbon-nanotube-guided thermopower waves

Wonjoon Choi; Seunghyun Hong; Joel T. Abrahamson; Jae Hee Han; Changsik Song; Nitish Nair; Seunghyun Baik; Michael S. Strano

Theoretical calculations predict that by coupling an exothermic chemical reaction with a nanotube or nanowire possessing a high axial thermal conductivity, a self-propagating reactive wave can be driven along its length. Herein, such waves are realized using a 7-nm cyclotrimethylene trinitramine annular shell around a multiwalled carbon nanotube and are amplified by more than 10(4) times the bulk value, propagating faster than 2 m s(-1), with an effective thermal conductivity of 1.28+/-0.2 kW m(-1) K(-1) at 2,860 K. This wave produces a concomitant electrical pulse of disproportionately high specific power, as large as 7 kW kg(-1), which we identify as a thermopower wave. Thermally excited carriers flow in the direction of the propagating reaction with a specific power that scales inversely with system size. The reaction also evolves an anisotropic pressure wave of high total impulse per mass (300 N s kg(-1)). Such waves of high power density may find uses as unique energy sources.


Science | 2010

Coherence Resonance in a Single-Walled Carbon Nanotube Ion Channel

Chang Young Lee; Wonjoon Choi; Jae Hee Han; Michael S. Strano

Oscillations in Carbon Nanotube Conductivity Theoretical studies have suggested that protons can be conducted rapidly in water trapped inside carbon nanotubes. C. Y. Lee et al. (p. 1320) connected two aqueous reservoirs with opened, single-walled carbon nanotubes, half a millimeter long but only 1.5 nanometers wide, and observed a high, stable proton current under electroosmotic conditions arising from a single nanotube. The addition of alkali cations caused random pore blocking and oscillations in ion current, resembling events seen in biological ion channels. Opened, water-filled carbon nanotubes can exhibit oscillations in proton conductivity when alkali ions are present. Biological ion channels are able to generate coherent and oscillatory signals from intrinsically noisy and stochastic components for ultrasensitive discrimination with the use of stochastic resonance, a concept not yet demonstrated in human-made analogs. We show that a single-walled carbon nanotube demonstrates oscillations in electroosmotic current through its interior at specific ranges of electric field that are the signatures of coherence resonance. Stochastic pore blocking is observed when individual cations partition into the nanotube obstructing an otherwise stable proton current. The observed oscillations occur because of coupling between pore blocking and a proton-diffusion limitation at the pore mouth. The result illustrates how simple ionic transport can generate coherent waveforms within an inherently noisy environment and points to new types of nanoreactors, sensors, and nanofluidic channels based on this platform.


ACS Nano | 2010

Evidence for high-efficiency exciton dissociation at polymer/single-walled carbon nanotube interfaces in planar nano-heterojunction photovoltaics

Moon Ho Ham; Geraldine L C Paulus; Chang Young Lee; Changsik Song; Kourosh Kalantar-zadeh; Wonjoon Choi; Jae Hee Han; Michael S. Strano

There is significant interest in combining carbon nanotubes with semiconducting polymers for photovoltaic applications because of potential advantages from smaller exciton transport lengths and enhanced charge separation. However, to date, bulk heterojunction (BHJ) devices have demonstrated relatively poor efficiencies, and little is understood about the polymer/nanotube junction. To investigate this interface, we fabricate a planar nano-heterojunction comprising well-isolated millimeter-long single-walled carbon nanotubes underneath a poly(3-hexylthiophene) (P3HT) layer. The resulting junctions display photovoltaic efficiencies per nanotube ranging from 3% to 3.82%, which exceed those of polymer/nanotube BHJs by a factor of 50-100. The increase is attributed to the absence of aggregate formation in this planar device geometry. It is shown that the polymer/nanotube interface itself is responsible for exciton dissociation. Typical open-circuit voltages are near 0.5 V with fill factors of 0.25-0.3, which are largely invariant with the number of nanotubes per device and P3HT thickness. A maximum efficiency is obtained for a 60 nm-thick P3HT layer, which is predicted by a Monte Carlo simulation that takes into account exciton generation, transport, recombination, and dissociation. This platform is promising for further understanding the potential role of polymer/nanotube interfaces for photovoltaic applications.


Nature Communications | 2013

Diameter-dependent ion transport through the interior of isolated single-walled carbon nanotubes

Wonjoon Choi; Zachary W. Ulissi; Steven Shimizu; Darin O. Bellisario; Mark D. Ellison; Michael S. Strano

Nanopores that approach molecular dimensions demonstrate exotic transport behaviour and are theoretically predicted to display discontinuities in the diameter dependence of interior ion transport because of structuring of the internal fluid. No experimental study has been able to probe this diameter dependence in the 0.5-2 nm diameter regime. Here we observe a surprising fivefold enhancement of stochastic ion transport rates for single-walled carbon nanotube centered at a diameter of approximately 1.6 nm. An electrochemical transport model informed from literature simulations is used to understand the phenomenon. We also observe rates that scale with cation type as Li(+)>K(+)>Cs(+)>Na(+) and pore blocking extent as K(+)>Cs(+)>Na(+)>Li(+) potentially reflecting changes in hydration shell size. Across several ion types, the pore-blocking current and inverse dwell time are shown to scale linearly at low electric field. This work opens up new avenues in the study of transport effects at the nanoscale.


Materials Today | 2010

Carbon nanotube-guided thermopower waves

Wonjoon Choi; Joel T. Abrahamson; Jennifer M. Strano; Michael S. Strano

Thermopower waves are a new concept for the direct conversion of chemical to electrical energy. A nanowire with large axial thermal diffusivity can accelerate a self-propagating reaction wave using a fuel coated along its length. The reaction wave drives electrical carriers in a thermopower wave, creating a high-power pulse of as much as 7 kW/kg in experiments using carbon nanotubes. We review nanomaterials designed to overcome limitations of thermoelectricity and explore the emerging scientific and practical outlook for devices using thermopower waves.


ACS Nano | 2011

Wavefront velocity oscillations of carbon-nanotube-guided thermopower waves: nanoscale alternating current sources.

Joel T. Abrahamson; Wonjoon Choi; Nicole S. Schonenbach; Jungsik Park; Jae Hee Han; Michael P. Walsh; Kourosh Kalantar-zadeh; Michael S. Strano

The nonlinear coupling between exothermic chemical reactions and a nanowire or nanotube with large axial heat conduction results in a self-propagating thermal wave guided along the nanoconduit. The resulting reaction wave induces a concomitant thermopower wave of high power density (>7 kW/kg), resulting in an electrical current along the same direction. We develop the theory of such waves and analyze them experimentally, showing that for certain values of the chemical reaction kinetics and thermal parameters, oscillating wavefront velocities are possible. We demonstrate such oscillations experimentally using a cyclotrimethylene-trinitramine/multiwalled carbon nanotube system, which produces frequencies in the range of 400 to 5000 Hz. The propagation velocity oscillations and the frequency dispersion are well-described by Fouriers law with an Arrhenius source term accounting for reaction and a linear heat exchange with the nanotube scaffold. The frequencies are in agreement with oscillations in the voltage generated by the reaction. These thermopower oscillations may enable new types of nanoscale power and signal processing sources.


ACS Applied Materials & Interfaces | 2014

Advanced Thermopower Wave in Novel ZnO Nanostructures/Fuel Composite

Kang Yeol Lee; Hayoung Hwang; Wonjoon Choi

Thermopower wave is a new concept of energy conversion from chemical to thermal to electrical energy, produced from the chemical reaction in well-designed hybrid structures between nanomaterials and combustible fuels. The enhancement and optimization of energy generation is essential to make it useful for future applications. In this study, we demonstrate that simple solution-based synthesized zinc oxide (ZnO) nanostructures, such as nanorods and nanoparticles are capable of generating high output voltage from thermopower waves. In particular, an astonishing improvement in the output voltage (up to 3 V; average 2.3 V) was achieved in a ZnO nanorods-based composite film with a solid fuel (collodion, 5% nitrocellulose), which generated an exothermic chemical reaction. Detailed analyses of thermopower waves in ZnO nanorods- and cube-like nanoparticles-based hybrid composites have been reported in which nanostructures, output voltage profile, wave propagation velocities, and surface temperature have been characterized. The average combustion velocities for a ZnO nanorods/fuel and a ZnO cube-like nanoparticles/fuel composites were 40.3 and 30.0 mm/s, while the average output voltages for these composites were 2.3 and 1.73 V. The high output voltage was attributed to the amplified temperature in intermixed composite of ZnO nanostructures and fuel due to the confined diffusive heat transfer in nanostructures. Moreover, the extended interfacial areas between ZnO nanorods and fuel induced large amplification in the dynamic change of the chemical potential, and it resulted in the enhanced output voltage. The differences of reaction velocity and the output voltage between ZnO nanorods- and ZnO cube-like nanoparticles-based composites were attributed to variations in electron mobility and grain boundary, as well as thermal conductivities of ZnO nanorods and particles. Understanding this astonishing increase and the variation of the output voltage and reaction velocity, precise ZnO nanostructures, will help in formulating specific strategies for obtaining enhanced energy generation from thermopower waves.


Journal of the American Chemical Society | 2011

Dynamics of Simultaneous, Single Ion Transport through Two Single-Walled Carbon Nanotubes: Observation of a Three-State System

Wonjoon Choi; Chang Young Lee; Moon Ho Ham; Steven Shimizu; Michael S. Strano

The ability to actively manipulate and transport single molecules in solution has the potential to revolutionize chemical synthesis and catalysis. In previous work, we developed a nanopore platform using the interior of a single-walled carbon nanotube (diameter = 1.5 nm) for the Coulter detection of single cations of Li(+), K(+), and Na(+). We demonstrate that as a result of their fabrication, such systems have electrostatic barriers present at their ends that are generally asymmetric, allowing for the trapping of ions. We show that above this threshold bias, traversing the nanopore end is not rate-limiting and that the pore-blocking behavior of two parallel nanotubes follows an idealized Markov process with the electrical potential. Such nanopores may allow for high-throughput linear processing of molecules as new catalysts and separation devices.


Journal of Materials Chemistry | 2015

Enhanced thermopower wave via nanowire bonding and grain boundary fusion in combustion of fuel/CuO–Cu2O–Cu hybrid composites

Kang Yeol Lee; Hayoung Hwang; Dongjoon Shin; Wonjoon Choi

Understanding the chemical–thermal–electrical energy conversion in micro/nanostructures is crucial for making breakthroughs in new fields related to energy research, as well as in improving the existing energy technologies. Thermopower wave utilizing this chemical–thermal–electrical energy conversion in hybrid structures of nanomaterials and combustible fuel has recently attracted much attention as an enhanced combustion wave with the concomitant voltage generation. In this study, we have explored thermopower waves in the hybrid composite of the chemical fuel and surface-oxidized copper sub-microparticles (SCuMPs) films during combustion. Here, we have demonstrated that the manipulations of micro/nanostructures in SCuMPs films by annealing are capable of converting the energy released during chemical combustion to a significantly large amount of thermal and electrical energy (average combustion velocity 32.6 mm s−1, output voltages up to 6.2 V; average 2.02 V) in comparison with the as-prepared SCuMPs films (19.2 mm s−1, up to 1.0 V; average 0.75 V) from thermopower waves. Owing to the inter grain boundary fusions and inner/surface nanowire-bonding by annealing, the chemical combustion rate, the corresponding thermal transport, and the electrical energy generation were greatly enhanced in the micro/nanostructured films. This work can contribute to the enhanced combustion wave and voltage generation in thermopower waves as well as further understanding of the fundamental phenomena in chemical–thermal–electrical energy conversions using micro/nanostructured materials.


Nanotechnology | 2014

Effects of chemical fuel composition on energy generation from thermopower waves

Taehan Yeo; Hayoung Hwang; Dong Cheol Jeong; Kang Yeol Lee; Jongsup Hong; Changsik Song; Wonjoon Choi

Thermopower waves, which occur during combustion within hybrid structures formed from nanomaterials and chemical fuels, result in a self-propagating thermal reaction and concomitantly generate electrical energy from the acceleration of charge carriers along the nanostructures. The hybrid structures for thermopower waves are composed of two primary components: the core thermoelectric material and the combustible fuel. So far, most studies have focused on investigating various nanomaterials for improving energy generation. Herein, we report that the composition of the chemical fuel used has a significant effect on the power generated by thermopower waves. Hybrid nanostructures consisting of mixtures of picric acid and picramide with sodium azide were synthesized and used to generate thermopower waves. A maximum voltage of ∼2 V and an average peak specific power as high as 15 kW kg(-1) were obtained using the picric acid/sodium azide/multiwalled carbon nanotubes (MWCNTs) array composite. The average reaction velocity and the output voltage in the case of the picric acid/sodium azide were 25 cm s(-1) and 157 mV, while they were 2 cm s(-1) and 3 mV, in the case of the picramide/sodium azide. These marked differences are attributable to the chemical and structural differences of the mixtures. Mixing picric acid and sodium azide in deionized water resulted in the formation of 2,4,6-trinitro sodium phenoxide and hydrogen azide (H-N3), owing to the exchange of H(+) and Na(+) ions, as well as the formation of fiber-like structures, because of benzene π stacking. The negative enthalpy of formation of the new compounds and the fiber-like structures accelerate the reaction and increase the output voltage. Elucidating the effects of the composition of the chemical fuel used in the hybrid nanostructures will allow for the control of the combustion process and help optimize the energy generated from thermopower waves, furthering the development of thermopower waves as an energy source.

Collaboration


Dive into the Wonjoon Choi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael S. Strano

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joel T. Abrahamson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jae Hee Han

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jongsup Hong

Korea Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge