Woo Kyu Kang
Chungnam National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Woo Kyu Kang.
Molecular Microbiology | 2012
Seon Ah Cheon; Jyotiranjan Bal; Yunkyoung Song; Hai-min Hwang; Ah Ruem Kim; Woo Kyu Kang; Hyun Kang; Hans Kristian Hannibal-Bach; Jens Knudsen; Christer S. Ejsing; Jeong-Yoon Kim
Lag1p and Lac1p catalyse ceramide synthesis in Saccharomyces cerevisiae. This study shows that Lag1 family proteins are generally required for polarized growth in hemiascomycetous yeast. However, in contrast to S. cerevisiae where these proteins are functionally redundant, C. albicans Lag1p (CaLag1p) and Lac1p (CaLac1p) are functionally distinct. Lack of CaLag1p, but not CaLac1p, caused severe defects in the growth and hyphal morphogenesis of C. albicans. Deletion of CaLAG1 decreased expression of the hypha‐specific HWP1 and ECE1 genes. Moreover, overexpression of CaLAG1 induced pseudohyphal growth in this organism under non‐hypha‐inducing conditions, suggesting that CaLag1p is necessary for relaying signals to induce hypha‐specific gene expression. Analysis of ceramide and sphingolipid composition revealed that CaLag1p predominantly synthesizes ceramides with C24:0/C26:0 fatty acid moieties, which are involved in generating inositol‐containing sphingolipids, whereas CaLac1p produces ceramides with C18:0 fatty acid moieties, which are precursors for glucosylsphingolipids. Thus, our study demonstrates that CaLag1p and CaLac1p have distinct substrate specificities and physiological roles in C. albicans.
eLife | 2015
Woo Kyu Kang; Yeong Hyeock Kim; Hyun Kang; Ki-Sun Kwon; Jeong-Yoon Kim
Silent information regulator 2 (Sir2), an NAD+-dependent protein deacetylase, has been proposed to be a longevity factor that plays important roles in dietary restriction (DR)-mediated lifespan extension. In this study, we show that the Sir2s role for DR-mediated lifespan extension depends on cAMP-PKA and casein kinase 2 (CK2) signaling in yeast. Sir2 partially represses the transcription of lifespan-associated genes, such as PMA1 (encoding an H+-ATPase) and many ribosomal protein genes, through deacetylation of Lys 16 of histone H4 in the promoter regions of these genes. This repression is relieved by Sir2 S473 phosphorylation, which is mediated by active cAMP-PKA and CK2 signaling. Moderate DR increases the replicative lifespan of wild-type yeast but has no effect on that of yeast expressing the Sir2-S473E or S473A allele, suggesting that the effect of Sir2 on DR-mediated lifespan extension is negatively regulated by S473 phosphorylation. Our results demonstrate a mechanism by which Sir2 contributes to lifespan extension. DOI: http://dx.doi.org/10.7554/eLife.09709.001
Eukaryotic Cell | 2015
Hye-Jeong Lee; Jong-Myeong Kim; Woo Kyu Kang; Heebum Yang; Jeong-Yoon Kim
ABSTRACT NDR (nuclear Dbf2-related) kinases are essential components for polarized morphogenesis, cytokinesis, cell proliferation, and apoptosis. The NDR kinase Cbk1 is required for the hyphal growth of Candida albicans; however, the molecular functions of Cbk1 in hyphal morphogenesis are largely unknown. Here, we report that Cbk1 downregulates the transcriptional repressor Nrg1 through the mRNA-binding protein Ssd1, which has nine Cbk1 phosphorylation consensus motifs. We found that deletion of SSD1 partially suppressed the defective hyphal growth of the C. albicans cbk1Δ/Δ mutant and that Ssd1 physically interacts with Cbk1. Cbk1 was required for Ssd1 localization to polarized growth sites. The phosphomimetic SSD1 allele (ssd1-9E) allowed the cbk1Δ/Δ mutant to form short hyphae, and the phosphodeficient SSD1 allele (ssd1-9A) resulted in shorter hyphae than did the wild-type SSD1 allele, indicating that Ssd1 phosphorylation by Cbk1 is important for hyphal morphogenesis. Furthermore, we show that the transcriptional repressor Nrg1 does not disappear during hyphal initiation in the cbk1Δ/Δ mutant but is completely absent in the cbk1Δ/Δ ssd1Δ/Δ double mutant. Deletion of SSD1 also increased Als3 expression and internalization of the cbk1Δ/Δ mutant in the human embryonic kidney cell line HEK293T. Collectively, our results suggest that one of the functions of Cbk1 in the hyphal morphogenesis of C. albicans is to downregulate Nrg1 through Ssd1.
Journal of Microbiology | 2014
Woo Kyu Kang; Yeong Hyeock Kim; Byoung-Soo Kim; Jeong-Yoon Kim
Silent Information Regulator 2 (Sir2), a conserved NAD+-dependent histone deacetylase, has been implicated as one of the key factors in regulating stress response and longevity. Here, we report that the role of Sir2 in oxidative stress resistance and chronological lifespan is dependent on growth phase in yeast. In exponential phase, sir2Δ cells were more resistant to H2O2 stress and had a longer chronological lifespan than wild type. By contrast, in post-diauxic phase, sir2Δ cells were less resistant to H2O2 stress and had a shorter chronological lifespan than wild type cells. Similarly, the expression of antioxidant genes, which are essential to cope with oxidative stress, was regulated by Sir2 in a growth phasedependent manner. Collectively, our findings highlight the importance of the metabolic state of the cell in determining whether Sir2 can protect against or accelerate cellular aging of yeast.
Journal of Biotechnology | 2013
Woo Kyu Kang; Min Hyung Lee; Yeong Hyeock Kim; Min Young Kim; Jeong-Yoon Kim
Vascular endothelial growth factor (VEGF) mediates angiogenesis, which plays a critical role in the development and differentiation of the vascular system. VEGF is a homodimeric glycoprotein that contains one N-glycosylation site. In this study, we evaluated Saccharomyces cerevisiae expression systems producing glycosylated and non-glycosylated splice variants of human VEGF, VEGF121, and VEGF165. The pre region of the mating factor α1 (MFα1) signal sequence was found to perform better than the entire MFα1 prepro signal sequence in secreting glycosylated VEGF. Secretion of non-glycosylated VEGF165 was completely blocked, indicating the importance of glycosylation in VEGF165 secretion. Interestingly, non-glycosylated VEGF165 was secreted when guided by the MFα1 prepro signal sequence, albeit to a lesser degree, compared to glycosylated VEGF165. N-glycosylation in the pro region was required for the prepro sequence to promote VEGF secretion. Furthermore, substitution of asparagine at the VEGF glycosylation site with lysine or glutamic acid increased secretion of non-glycosylated VEGF, a finding not previously reported. Our findings suggest that S. cerevisiae could be a suitable host for secreting biologically active, non-glycosylated VEGF for clinical use.
Biotechnology and Bioprocess Engineering | 2003
Ho Myoung Ryu; Woo Kyu Kang; Hyun Ah Kang; Jeong-Yoon Kim
In order to study the secretion of the human urokinase-type plasminogen activator, u-PA, from the yeastYarrowia lipolytica, three kinds of integrative expression vector were constructed. These vectors differed only in their secretion control regions, pre-, pre-dip- (dipeptide stretch) or pre-dip-pro sequences of the alkaline extracellular protease, which were joined inframe to the human u-PA cDNA. The recombinantY. lipolytica strains, transformed with the expression vectors, secreted the hyperglycosylated u-PA. A fibrin plate assay of the culture supernatants showed that the hyperglycosylated u-PA proteins could catalyze fibrinolysis, and that the pre-dip sequence was the most efficient secretory signal for the secretion of the u-PA fromY. lipolytica. This result suggests thatY. lipolytica can be developed as a potential host for the production of recombinant human u-PA.
Protein Expression and Purification | 2007
Woo Kyu Kang; Eun-Kyu Park; Hee Suk Lee; Byung-Young Park; Jae-Young Chang; Min-Young Kim; Hyun Ah Kang; Jeong-Yoon Kim
Biotechnology and Bioengineering | 2005
Hyun Ah Kang; Woo Kyu Kang; Su-Min Go; Abbas Rezaee; Sajja Hari Krishna; Sang Ki Rhee; Jeong-Yoon Kim
한국미생물학회 학술대회논문집 | 2016
Yeong Hyeock Kim; Woo Sun Song; Woo Kyu Kang; Jeong Yoon Kim
한국미생물학회 학술대회논문집 | 2013
Woo Kyu Kang; Young Eun Kim; Ji-Young Lee; Yeong Hyeock Kim; Jeong-Yoon Kim