Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where WooJhon Choi is active.

Publication


Featured researches published by WooJhon Choi.


Biomedical Optics Express | 2012

Quantitative OCT angiography of optic nerve head blood flow.

Yali Jia; John C. Morrison; Jason Tokayer; Ou Tan; Lorinna Lombardi; Bernhard Baumann; Chen D. Lu; WooJhon Choi; James G. Fujimoto; David Huang

Optic nerve head (ONH) blood flow may be associated with glaucoma development. A reliable method to quantify ONH blood flow could provide insight into the vascular component of glaucoma pathophysiology. Using ultrahigh-speed optical coherence tomography (OCT), we developed a new 3D angiography algorithm called split-spectrum amplitude-decorrelation angiography (SSADA) for imaging ONH microcirculation. In this study, a method to quantify SSADA results was developed and used to detect ONH perfusion changes in early glaucoma. En face maximum projection was used to obtain 2D disc angiograms, from which the average decorrelation values (flow index) and the percentage area occupied by vessels (vessel density) were computed from the optic disc and a selected region within it. Preperimetric glaucoma patients had significant reductions of ONH perfusion compared to normals. This pilot study indicates OCT angiography can detect the abnormalities of ONH perfusion and has the potential to reveal the ONH blood flow mechanism related to glaucoma.


PLOS ONE | 2013

Choriocapillaris and Choroidal Microvasculature Imaging with Ultrahigh Speed OCT Angiography

WooJhon Choi; Kathrin J. Mohler; Benjamin Potsaid; Chen D. Lu; Jonathan J. Liu; Vijaysekhar Jayaraman; Alex Cable; Jay S. Duker; Robert Huber; James G. Fujimoto

We demonstrate in vivo choriocapillaris and choroidal microvasculature imaging in normal human subjects using optical coherence tomography (OCT). An ultrahigh speed swept source OCT prototype at 1060 nm wavelengths with a 400 kHz A-scan rate is developed for three-dimensional ultrahigh speed imaging of the posterior eye. OCT angiography is used to image three-dimensional vascular structure without the need for exogenous fluorophores by detecting erythrocyte motion contrast between OCT intensity cross-sectional images acquired rapidly and repeatedly from the same location on the retina. En face OCT angiograms of the choriocapillaris and choroidal vasculature are visualized by acquiring cross-sectional OCT angiograms volumetrically via raster scanning and segmenting the three-dimensional angiographic data at multiple depths below the retinal pigment epithelium (RPE). Fine microvasculature of the choriocapillaris, as well as tightly packed networks of feeding arterioles and draining venules, can be visualized at different en face depths. Panoramic ultra-wide field stitched OCT angiograms of the choriocapillaris spanning ∼32 mm on the retina show distinct vascular structures at different fundus locations. Isolated smaller fields at the central fovea and ∼6 mm nasal to the fovea at the depths of the choriocapillaris and Sattlers layer show vasculature structures consistent with established architectural morphology from histological and electron micrograph corrosion casting studies. Choriocapillaris imaging was performed in eight healthy volunteers with OCT angiograms successfully acquired from all subjects. These results demonstrate the feasibility of ultrahigh speed OCT for in vivo dye-free choriocapillaris and choroidal vasculature imaging, in addition to conventional structural imaging.


Ophthalmic Surgery and Lasers | 2014

Ultrahigh-Speed Swept-Source OCT Angiography in Exudative AMD

Eric M. Moult; WooJhon Choi; Nadia K. Waheed; Mehreen Adhi; Byung Kun Lee; Chen D. Lu; Vijaysekhar Jayaraman; Benjamin Potsaid; Philip J. Rosenfeld; Jay S. Duker; James G. Fujimoto

BACKGROUND AND OBJECTIVE To investigate the potential of ultrahigh-speed swept-source optical coherence tomography angiography (OCTA) to visualize retinal and choroidal vascular changes in patients with exudative age-related macular degeneration (AMD). PATIENTS AND METHODS Observational, prospective cross-sectional study. An ultrahigh-speed swept-source prototype was used to perform OCTA of the retinal and choriocapillaris microvasculature in 63 eyes of 32 healthy controls and 19 eyes of 15 patients with exudative AMD. MAIN OUTCOME MEASURE qualitative comparison of the retinal and choriocapillaris microvasculature in the two groups. RESULTS Choroidal neovascularization (CNV) was clearly visualized in 16 of the 19 eyes with exudative AMD, located above regions of severe choriocapillaris alteration. In 14 of these eyes, the CNV lesions were surrounded by regions of choriocapillaris alteration. CONCLUSION OCTA may offer noninvasive monitoring of the retinal and choriocapillaris microvasculature in patients with CNV, which may assist in diagnosis and monitoring.


Biomedical Optics Express | 2014

Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror

Chen D. Lu; Martin F. Kraus; Benjamin Potsaid; Jonathan J. Liu; WooJhon Choi; Vijaysekhar Jayaraman; Alex Cable; Joachim Hornegger; Jay S. Duker; James G. Fujimoto

We developed an ultrahigh speed, handheld swept source optical coherence tomography (SS-OCT) ophthalmic instrument using a 2D MEMS mirror. A vertical cavity surface-emitting laser (VCSEL) operating at 1060 nm center wavelength yielded a 350 kHz axial scan rate and 10 µm axial resolution in tissue. The long coherence length of the VCSEL enabled a 3.08 mm imaging range with minimal sensitivity roll-off in tissue. Two different designs with identical optical components were tested to evaluate handheld OCT ergonomics. An iris camera aided in alignment of the OCT beam through the pupil and a manual fixation light selected the imaging region on the retina. Volumetric and high definition scans were obtained from 5 undilated normal subjects. Volumetric OCT data was acquired by scanning the 2.4 mm diameter 2D MEMS mirror sinusoidally in the fast direction and linearly in the orthogonal slow direction. A second volumetric sinusoidal scan was obtained in the orthogonal direction and the two volumes were processed with a software algorithm to generate a merged motion-corrected volume. Motion-corrected standard 6 x 6 mm(2) and wide field 10 x 10 mm(2) volumetric OCT data were generated using two volumetric scans, each obtained in 1.4 seconds. High definition 10 mm and 6 mm B-scans were obtained by averaging and registering 25 B-scans obtained over the same position in 0.57 seconds. One of the advantages of volumetric OCT data is the generation of en face OCT images with arbitrary cross sectional B-scans registered to fundus features. This technology should enable screening applications to identify early retinal disease, before irreversible vision impairment or loss occurs. Handheld OCT technology also promises to enable applications in a wide range of settings outside of the traditional ophthalmology or optometry clinics including pediatrics, intraoperative, primary care, developing countries, and military medicine.


Optics Letters | 2013

Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source.

WooJhon Choi; Benjamin Potsaid; Vijaysekhar Jayaraman; Bernhard Baumann; Ireneusz Grulkowski; Jonathan J. Liu; Chen D. Lu; Alex Cable; David Huang; Jay S. Duker; James G. Fujimoto

Despite the challenges in achieving high phase stability, Doppler swept-source/Fourier-domain optical coherence tomography (OCT) has advantages of less fringe washout and faster imaging speeds compared to spectral/Fourier-domain detection. This Letter demonstrates swept-source OCT with a vertical cavity surface-emitting laser light source at 400 kHz sweep rate for phase-sensitive Doppler imaging, measuring pulsatile total retinal blood flow with high sensitivity and phase stability. A robust, simple, and computationally efficient phase stabilization approach for phase-sensitive swept-source imaging is also presented.


Ophthalmology | 2015

Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy

WooJhon Choi; Eric M. Moult; Nadia K. Waheed; Mehreen Adhi; ByungKun Lee; Chen D. Lu; Talisa E. de Carlo; Vijaysekhar Jayaraman; Philip J. Rosenfeld; Jay S. Duker; James G. Fujimoto

PURPOSE To investigate ultrahigh-speed, swept-source optical coherence tomography (SSOCT) angiography for visualizing vascular changes in eyes with nonexudative age-related macular degeneration (AMD) with geographic atrophy (GA). DESIGN Observational, prospective, cross-sectional study. PARTICIPANTS A total of 63 eyes from 32 normal subjects and 12 eyes from 7 patients with nonexudative AMD with GA. METHODS A 1050-nm, 400-kHz A-scan rate SSOCT system was used to perform volumetric optical coherence tomography angiography (OCTA) of the retinal and choriocapillaris (CC) vasculatures in normal subjects and patients with nonexudative AMD with GA. Optical coherence tomography angiography using variable interscan time analysis (VISTA) was performed to assess CC alteration and differentiate varying degrees of CC flow impairment. MAIN OUTCOME MEASURES Qualitative comparison of retinal and CC vasculatures in normal subjects versus those in patients with a clinical diagnosis of nonexudative AMD with GA. RESULTS In all 12 eyes with GA, OCTA showed pronounced CC flow impairment within the region of GA. In 10 of the 12 eyes with GA, OCTA with VISTA showed milder CC flow impairment extending beyond the margin of GA. Of the 5 eyes exhibiting foveal-sparing GA, OCTA showed CC flow within the region of foveal sparing in 4 of the eyes. CONCLUSIONS The ability of ultrahigh-speed, swept-source OCTA to noninvasively visualize alterations in the retinal and CC vasculatures makes it a promising tool for assessing nonexudative AMD with GA. Optical coherence tomography angiography using VISTA can distinguish varying degrees of CC alteration and flow impairment and may be useful for elucidating disease pathogenesis, progression, and response to therapy.


Biomedical Optics Express | 2012

Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT

WooJhon Choi; Bernhard Baumann; Jonathan J. Liu; Allen C. Clermont; Edward P. Feener; Jay S. Duker; James G. Fujimoto

We present an approach to measure pulsatile total retinal arterial blood flow in humans and rats using ultrahigh speed Doppler OCT. The axial blood velocity is measured in an en face plane by raster scanning and the flow is calculated by integrating over the vessel area, without the need to measure the Doppler angle. By measuring flow at the central retinal artery, the scan area can be very small. Combined with ultrahigh speed, this approach enables high volume acquisition rates necessary for pulsatile total flow measurement without modification in the OCT system optics. A spectral domain OCT system at 840nm with an axial scan rate of 244kHz was used for this study. At 244kHz the nominal axial velocity range that could be measured without phase wrapping was ±37.7mm/s. By repeatedly scanning a small area centered at the central retinal artery with high volume acquisition rates, pulsatile flow characteristics, such as systolic, diastolic, and mean total flow values, were measured. Real-time Doppler C-scan preview is proposed as a guidance tool to enable quick and easy alignment necessary for large scale studies. Data processing for flow calculation can be entirely automatic using this approach because of the simple and robust algorithm. Due to the rapid volume acquisition rate and the fact that the measurement is independent of Doppler angle, this approach is inherently less sensitive to involuntary eye motion. This method should be useful for investigation of small animal models of ocular diseases as well as total blood flow measurements in human patients in the clinic.


Biomedical Optics Express | 2014

Depth-encoded all-fiber swept source polarization sensitive OCT

Zhao Wang; Hsiang-Chieh Lee; Osman O. Ahsen; ByungKun Lee; WooJhon Choi; Benjamin Potsaid; Jonathan J. Liu; Vijaysekhar Jayaraman; Alex Cable; Martin F. Kraus; Kaicheng Liang; Joachim Hornegger; James G. Fujimoto

Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of conventional OCT and can assess depth-resolved tissue birefringence in addition to intensity. Most existing PS-OCT systems are relatively complex and their clinical translation remains difficult. We present a simple and robust all-fiber PS-OCT system based on swept source technology and polarization depth-encoding. Polarization multiplexing was achieved using a polarization maintaining fiber. Polarization sensitive signals were detected using fiber based polarization beam splitters and polarization controllers were used to remove the polarization ambiguity. A simplified post-processing algorithm was proposed for speckle noise reduction relaxing the demand for phase stability. We demonstrated systems design for both ophthalmic and catheter-based PS-OCT. For ophthalmic imaging, we used an optical clock frequency doubling method to extend the imaging range of a commercially available short cavity light source to improve polarization depth-encoding. For catheter based imaging, we demonstrated 200 kHz PS-OCT imaging using a MEMS-tunable vertical cavity surface emitting laser (VCSEL) and a high speed micromotor imaging catheter. The system was demonstrated in human retina, finger and lip imaging, as well as ex vivo swine esophagus and cardiovascular imaging. The all-fiber PS-OCT is easier to implement and maintain compared to previous PS-OCT systems and can be more easily translated to clinical applications due to its robust design.


Retina-the Journal of Retinal and Vitreous Diseases | 2017

ULTRAHIGH SPEED SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF RETINAL AND CHORIOCAPILLARIS ALTERATIONS IN DIABETIC PATIENTS WITH AND WITHOUT RETINOPATHY.

WooJhon Choi; Nadia K. Waheed; Eric M. Moult; Mehreen Adhi; ByungKun Lee; de Carlo T; Jayaraman; Caroline R. Baumal; Jay S. Duker; James G. Fujimoto

Purpose: To investigate the utility of ultrahigh speed, swept source optical coherence tomography angiography in visualizing retinal microvascular and choriocapillaris (CC) changes in diabetic patients. Methods: The study was prospective and cross-sectional. A 1,050 nm wavelength, 400 kHz A-scan rate swept source optical coherence tomography prototype was used to perform volumetric optical coherence tomography angiography of the retinal and CC vasculatures in diabetic patients and normal subjects. Sixty-three eyes from 32 normal subjects, 9 eyes from 7 patients with proliferative diabetic retinopathy, 29 eyes from 16 patients with nonproliferative diabetic retinopathy, and 51 eyes from 28 diabetic patients without retinopathy were imaged. Results: Retinal and CC microvascular abnormalities were observed in all stages of diabetic retinopathy. In nonproliferative diabetic retinopathy and proliferative diabetic retinopathy, optical coherence tomography angiography visualized a variety of vascular abnormalities, including clustered capillaries, dilated capillary segments, tortuous capillaries, regions of capillary dropout, reduced capillary density, abnormal capillary loops, and foveal avascular zone enlargement. In proliferative diabetic retinopathy, retinal neovascularization above the inner limiting membrane was visualized. Regions of CC flow impairment in patients with proliferative diabetic retinopathy and nonproliferative diabetic retinopathy were also observed. In 18 of the 51 of eyes from diabetic patients without retinopathy, retinal mircrovascular abnormalities were observed and CC flow impairment was found in 24 of the 51 diabetic eyes without retinopathy. Conclusion: The ability of optical coherence tomography angiography to visualize retinal and CC microvascular abnormalities suggests it may be a useful tool for understanding pathogenesis, evaluating treatment response, and earlier detection of vascular abnormalities in patients with diabetes.


Investigative Ophthalmology & Visual Science | 2015

Cardiac-Gated En Face Doppler Measurement of Retinal Blood Flow Using Swept-Source Optical Coherence Tomography at 100,000 Axial Scans per Second

ByungKun Lee; WooJhon Choi; Jonathan J. Liu; Chen D. Lu; Joel S. Schuman; Gadi Wollstein; Jay S. Duker; Nadia K. Waheed; James G. Fujimoto

PURPOSE To develop and demonstrate a cardiac gating method for repeatable in vivo measurement of total retinal blood flow (TRBF) in humans using en face Doppler optical coherence tomography (OCT) at commercially available imaging speeds. METHODS A prototype swept-source OCT system operating at 100-kHz axial scan rate was developed and interfaced with a pulse oximeter. Using the plethysmogram measured from the earlobe, Doppler OCT imaging of a 1.5- × 2-mm area at the optic disc at 1.8 volumes/s was synchronized to cardiac cycle to improve sampling of pulsatile blood flow. Postprocessing algorithms were developed to achieve fully automatic calculation of TRBF. We evaluated the repeatability of en face Doppler OCT measurement of TRBF in 10 healthy young subjects using three methods: measurement at 100 kHz with asynchronous acquisition, measurement at 100 kHz with cardiac-gated acquisition, and a control measurement using a 400-kHz instrument with asynchronous acquisition. RESULTS The median intrasubject coefficients of variation (COV) of the three methods were 8.0%, 4.9%, and 6.1%, respectively. All three methods correlated well, without a significant bias. Mean TRBF measured at 100 kHz with cardiac-gated acquisition was 40.5 ± 8.2 μL/min, and the range was from 26.6 to 55.8 μL/min. CONCLUSIONS Cardiac-gated en face Doppler OCT can achieve smaller measurement variability than previously reported methods. Although further validation in older subjects and diseased subjects is required, precise measurement of TRBF using cardiac-gated en face Doppler OCT at commercially available imaging speeds should be feasible.

Collaboration


Dive into the WooJhon Choi's collaboration.

Top Co-Authors

Avatar

James G. Fujimoto

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric M. Moult

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

ByungKun Lee

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Chen D. Lu

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Benjamin Potsaid

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jonathan J. Liu

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Vijaysekhar Jayaraman

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Eduardo A. Novais

Federal University of São Paulo

View shared research outputs
Researchain Logo
Decentralizing Knowledge