Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Woon Seok Yang is active.

Publication


Featured researches published by Woon Seok Yang.


Science | 2015

High-performance photovoltaic perovskite layers fabricated through intramolecular exchange

Woon Seok Yang; Jun Hong Noh; Nam Joong Jeon; Young Chan Kim; Seungchan Ryu; Jangwon Seo; Sang Il Seok

Taking in more sun Most efforts to grow superior films of organic-inorganic perovskites for solar cells have focused on methylammonium lead iodide (MAPbI3). However, formamidinium lead iodide (FAPbI3) has a broader solar absorption spectrum that could ultimately lead to better performance. Yang et al. grew high-quality FAPbI3 films by starting with a film of lead iodide and dimethylsulfoxide (DMSO) and then exchanging the DMSO with formamidinium iodide. Their best devices achieved power conversion efficiencies exceeding 20%. Science, this issue p. 1234 An intramolecular exchange process enables growth of high-quality organic perovskite films with greater solar spectral range. The band gap of formamidinium lead iodide (FAPbI3) perovskites allows broader absorption of the solar spectrum relative to conventional methylammonium lead iodide (MAPbI3). Because the optoelectronic properties of perovskite films are closely related to film quality, deposition of dense and uniform films is crucial for fabricating high-performance perovskite solar cells (PSCs). We report an approach for depositing high-quality FAPbI3 films, involving FAPbI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide. This process produces FAPbI3 films with (111)-preferred crystallographic orientation, large-grained dense microstructures, and flat surfaces without residual PbI2. Using films prepared by this technique, we fabricated FAPbI3-based PSCs with maximum power conversion efficiency greater than 20%.


Science | 2017

Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells

Woon Seok Yang; Byung-wook Park; Eui Hyuk Jung; Nam Joong Jeon; Young Chan Kim; Dong Uk Lee; Seong Sik Shin; Jangwon Seo; Eun Kyu Kim; Jun Hong Noh; Sang Il Seok

Healing defects with triiodide ions Deep-level defects in organic-inorganic perovskites decrease the performance of solar cells through unproductive recombination of charge carriers. Yang et al. show that introducing additional triiodide ions during the formation of layers of formamidinium lead iodide, which also contain small amounts of methylammonium lead bromide, suppresses the formation of deep-level defects. This process boosts the certified efficiency of 1-cm2 solar cells to almost 20%. Science, this issue p. 1376 Deep-level defect states in formamidinium lead perovskite layers can be minimized by the addition of triiodide ions. The formation of a dense and uniform thin layer on the substrates is crucial for the fabrication of high-performance perovskite solar cells (PSCs) containing formamidinium with multiple cations and mixed halide anions. The concentration of defect states, which reduce a cell’s performance by decreasing the open-circuit voltage and short-circuit current density, needs to be as low as possible. We show that the introduction of additional iodide ions into the organic cation solution, which are used to form the perovskite layers through an intramolecular exchanging process, decreases the concentration of deep-level defects. The defect-engineered thin perovskite layers enable the fabrication of PSCs with a certified power conversion efficiency of 22.1% in small cells and 19.7% in 1-square-centimeter cells.


Nature Materials | 2014

Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells

Nam Joong Jeon; Jun Hong Noh; Young Chan Kim; Woon Seok Yang; Seungchan Ryu; Sang Il Seok

Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic cells. Two different cell structures, based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive advances in performance. Here, we report a bilayer architecture comprising the key features of mesoscopic and planar structures obtained by a fully solution-based process. We used CH3NH3 Pb(I(1-x)Br(x))3 (x = 0.1-0.15) as the absorbing layer and poly(triarylamine) as a hole-transporting material. The use of a mixed solvent of γ-butyrolactone and dimethylsulphoxide (DMSO) followed by toluene drop-casting leads to extremely uniform and dense perovskite layers via a CH3NH3I-PbI2-DMSO intermediate phase, and enables the fabrication of remarkably improved solar cells with a certified power-conversion efficiency of 16.2% and no hysteresis. These results provide important progress towards the understanding of the role of solution-processing in the realization of low-cost and highly efficient perovskite solar cells.


Nature | 2015

Compositional engineering of perovskite materials for high-performance solar cells

Nam Joong Jeon; Jun Hong Noh; Woon Seok Yang; Young Chan Kim; Seungchan Ryu; Jangwon Seo; Sang Il Seok

Of the many materials and methodologies aimed at producing low-cost, efficient photovoltaic cells, inorganic–organic lead halide perovskite materials appear particularly promising for next-generation solar devices owing to their high power conversion efficiency. The highest efficiencies reported for perovskite solar cells so far have been obtained mainly with methylammonium lead halide materials. Here we combine the promising—owing to its comparatively narrow bandgap—but relatively unstable formamidinium lead iodide (FAPbI3) with methylammonium lead bromide (MAPbBr3) as the light-harvesting unit in a bilayer solar-cell architecture. We investigated phase stability, morphology of the perovskite layer, hysteresis in current–voltage characteristics, and overall performance as a function of chemical composition. Our results show that incorporation of MAPbBr3 into FAPbI3 stabilizes the perovskite phase of FAPbI3 and improves the power conversion efficiency of the solar cell to more than 18 per cent under a standard illumination of 100 milliwatts per square centimetre. These findings further emphasize the versatility and performance potential of inorganic–organic lead halide perovskite materials for photovoltaic applications.


Energy and Environmental Science | 2014

Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor

Seungchan Ryu; Jun Hong Noh; Nam Joong Jeon; Young Chan Kim; Woon Seok Yang; Jangwon Seo; Sang Il Seok

Besides the generated photocurrent as a key factor that impacts the efficiency of solar cells, the produced photovoltage and fill factor are also of critical importance. Therefore, understanding and optimization of the open-circuit voltage (Voc) of perovskite solar cells, especially with an architecture consisting of mesoporous (mp)-TiO2/perovskite/hole transporting materials (HTMs), are required to further improve the conversion efficiency. In this work, we study the effects of the energy level between CH3NH3(= MA)PbI3 and MAPbBr3 and a series of triarylamine polymer derivatives containing fluorene and indenofluorene, which have different highest occupied molecular orbital (HOMO) levels, in terms of the photovoltaic behaviour. The voltage output of the device is found to be dependent on the higher energy level of perovskite solar absorbers as well as the HOMO level of the HTMs. The combination of MAPbBr3 and a deep-HOMO HTM leads to a high photovoltage of 1.40 V, with a fill factor of 79% and an energy conversion efficiency of up to 6.7%, which is the highest value reported to date for MAPbBr3 perovskite solar cells.


Science | 2017

Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells

Seong Sik Shin; Eun Joo Yeom; Woon Seok Yang; Seyoon Hur; Min Gyu Kim; Jino Im; Jangwon Seo; Jun Hong Noh; Sang Il Seok

Transporter layers for greater stability Although perovskite solar cells (PSCs) can have power conversion efficiencies exceeding 20%, they can have limited stability under ultraviolet irradiation. This is in part because the mesoporous TiO2 used as an electron-transporting layer can photocatalyze unwanted reactions in the perovskite layer. Shin et al. report a low-temperature colloidal method for depositing La-doped BaSnO3 films as a replacement for TiO2 to reduce such ultraviolet-induced damage. Solar cells retained over 90% of their initial performance after 1000 hours of full sun illumination. Science, this issue p. 167 Ultraviolet damage in perovskite photovoltaics induced by TiO2 in the electron-transporting layer can be avoided with La-doped BaSnO3. Perovskite solar cells (PSCs) exceeding a power conversion efficiency (PCE) of 20% have mainly been demonstrated by using mesoporous titanium dioxide (mp-TiO2) as an electron-transporting layer. However, TiO2 can reduce the stability of PSCs under illumination (including ultraviolet light). Lanthanum (La)–doped BaSnO3 (LBSO) perovskite would be an ideal replacement given its electron mobility and electronic structure, but LBSO cannot be synthesized as well-dispersible fine particles or crystallized below 500°C. We report a superoxide colloidal solution route for preparing a LBSO electrode under very mild conditions (below 300°C). The PSCs fabricated with LBSO and methylammonium lead iodide (MAPbI3) show a steady-state power conversion efficiency of 21.2%, versus 19.7% for a mp-TiO2 device. The LBSO-based PSCs could retain 93% of their initial performance after 1000 hours of full-Sun illumination.


Nature Communications | 2015

High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C.

Seong Sik Shin; Woon Seok Yang; Jun Hong Noh; Jae Ho Suk; Nam Joong Jeon; Jong Hoon Park; Ju Seong Kim; Won Mo Seong; Sang Il Seok

Fabricating inorganic–organic hybrid perovskite solar cells (PSCs) on plastic substrates broadens their scope for implementation in real systems by imparting portability, conformability and allowing high-throughput production, which is necessary for lowering costs. Here we report a new route to prepare highly dispersed Zn2SnO4 (ZSO) nanoparticles at low-temperature (<100 °C) for the development of high-performance flexible PSCs. The introduction of the ZSO film significantly improves transmittance of flexible polyethylene naphthalate/indium-doped tin oxide (PEN/ITO)-coated substrate from ∼75 to ∼90% over the entire range of wavelengths. The best performing flexible PSC, based on the ZSO and CH3NH3PbI3 layer, exhibits steady-state power conversion efficiency (PCE) of 14.85% under AM 1.5G 100 mW·cm−2 illumination. This renders ZSO a promising candidate as electron-conducting electrode for the highly efficient flexible PSC applications.


Journal of Physical Chemistry Letters | 2016

Tailoring of Electron-Collecting Oxide Nanoparticulate Layer for Flexible Perovskite Solar Cells

Seong Sik Shin; Woon Seok Yang; Eun Joo Yeom; Seon Joo Lee; Nam Joong Jeon; Young-Chang Joo; Ik Jae Park; Jun Hong Noh; Sang Il Seok

Low-temperature-processed perovskite solar cells (PSCs), especially those fabricated on flexible substrates, exhibit device performance that is worse than that of high-temperature-processed PSCs. One of the main reasons for the inferior performance of low-temperature-processed PSCs is the loss of photogenerated electrons in the electron collection layer (ECL) or related interfaces, i.e., indium tin oxide/ECL and ECL/perovskite. Here, we report that tailoring of the energy level and electron transporting ability in oxide ECLs using Zn2SnO4 nanoparticles and quantum dots notably minimizes the loss of photogenerated electrons in the low-temperature-fabricated flexible PSC. The proposed ECL with methylammonium lead halide [MAPb(I0.9Br0.1)3] leads to fabrication of significantly improved flexible PSCs with steady-state power conversion efficiency of 16.0% under AM 1.5G illumination of 100 mW cm(-2) intensity. These results provide an effective method for fabricating high-performance, low-temperature solution-processed flexible PSCs.


Journal of Materials Chemistry | 2017

Controllable synthesis of single crystalline Sn-based oxides and their application in perovskite solar cells

Eun Joo Yeom; Seong Sik Shin; Woon Seok Yang; Seon Joo Lee; Wenping Yin; Dasom Kim; Jun Hong Noh; Tae Kyu Ahn; Sang Il Seok

We synthesized single-crystalline Sn-based oxides for use as electron-transporting layers (ETLs) in perovskite solar cells (PSCs). The control of the Zn-to-Sn cation ratio (Zn/Sn = 0–2) in a fixed concentration of hydrazine solution leads to the formation of various types of Sn-based oxides, i.e., spherical SnO2 and Zn2SnO4 nanoparticles (NPs), SnO2 nanorods, and Zn2SnO4 nanocubes. In particular, a ratio of Zn/Sn = 1 results in nanocomposites of single-crystalline SnO2 nanorods and Zn2SnO4 nanocubes. This is related to the concentration of free hydrazine unreacted with Zn and Sn ions in the reaction solution, because the resulting OH− concentration affects the growth rate of intermediate phases such as ZnSn(OH)6, Zn(OH)42− and Sn(OH)62−. Additionally, we propose plausible pathways for the formation of Sn-based oxides in hydrazine solution. The Sn-based oxides are applied as ETLs and annealed at a low temperature below 150 °C in PSCs. The PSCs fabricated by using the nanocomposite ETLs consisting of single-crystalline SnO2 nanorods and Zn2SnO4 nanocubes exhibit superior device performance to TiO2-based PSCs due to their excellent charge collection ability and optical properties, achieving a power conversion efficiency of ≥17%.


ACS Applied Materials & Interfaces | 2017

Spatial Distribution of Lead Iodide and Local Passivation on Organo-Lead Halide Perovskite

Sheng Chen; Xiaoming Wen; Jae S. Yun; Shujuan Huang; Martin A. Green; Nam Joong Jeon; Woon Seok Yang; Jun Hong Noh; Jangwon Seo; Sang Il Seok; Anita Ho-Baillie

We identify nanoscale spatial distribution of PbI2 on the (FAPbI3)0.85(MAPbBr3)0.15 perovskite thin film and investigate the local passivation effect using confocal based optical microscopy of steady state and time-resolved photoluminescence (PL). Different from a typical scanning electron microscope (SEM) morphology study, confocal based PL spectroscopy and microscopy allow researchers to map the morphologies of both perovskite and PbI2 grains simultaneously, by selectively detecting their characteristic fluorescent bands using band-pass filters. In this work, we compare the perovskite samples without and with excess PbI2 incorporation and unambiguously reveal PbI2 distribution for the PbI2-rich sample. In addition, using the nanoscale time-resolved PL technique we show that the PbI2-rich regions exhibit longer lifetime due to suppressed defect trapping, compared to the PbI2-poor regions. The measurement on the PbI2-rich sample indicates that the passivation effect of PbI2 in perovskite film is effective, especially in localized regions. Hence, this finding is important for further improvement of the solar cells by considering the strategy of excess PbI2 incorporation.

Collaboration


Dive into the Woon Seok Yang's collaboration.

Top Co-Authors

Avatar

Sang Il Seok

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jangwon Seo

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Seong Sik Shin

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Eun Joo Yeom

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

Tae Kyu Ahn

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong Chan Choi

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar

Anita Ho-Baillie

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge