Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Woosuk Kim is active.

Publication


Featured researches published by Woosuk Kim.


Journal of Pineal Research | 2012

Melatonin improves D-galactose-induced aging effects on behavior, neurogenesis, and lipid peroxidation in the mouse dentate gyrus via increasing pCREB expression.

Dae Young Yoo; Woosuk Kim; Choong Hyun Lee; Bin Na Shin; Sung Min Nam; Jung Hoon Choi; Moo-Ho Won; Yeo Sung Yoon; In Koo Hwang

Abstract:  Melatonin (N‐acetyl‐5‐methoxytryptamine) has multiple functions. In this study, we investigated the effects of melatonin on memory, cell proliferation, and neuroblast differentiation in the dentate gyrus of a mouse model of d‐galactose‐induced aging. d‐galactose was subcutaneously administered to 7‐wk‐old mice for 10 wk, and age‐matched mice were used as controls. Seven weeks after d‐galactose administration, vehicle (water) or melatonin (6 mg/L in water) was administered ad libitum to the mice for 3 wk. The administration of d‐galactose significantly increased the escape latency compared with that in the control mice on days 1–3. In addition, cells in the subgranular zone and in the granule cell layer of the dentate gyrus showed severe damage (cytoplasmic condensation) in the d‐galactose‐treated mice. However, melatonin supplementation to these mice for 3 wk significantly ameliorated the d‐galactose‐induced increase in escape latency and neuronal damage compared with the vehicle‐treated group. The administration of melatonin also significantly restored the d‐galactose‐induced reduction of proliferating cells (Ki67‐positive cells) and differentiating neuroblasts (doublecortin‐positive neuroblasts) in the dentate gyrus. Furthermore, the administration of melatonin significantly increased Ser133‐phosphorylated cyclic AMP response element binding protein in the dentate gyrus. The administration of melatonin significantly reduced d‐galactose‐induced lipid peroxidation in the dentate gyrus. These results suggest that melatonin may be helpful in reducing age‐related phenomena in the brain.


Journal of Medicinal Food | 2014

Effects of Curcumin (Curcuma longa) on Learning and Spatial Memory as Well as Cell Proliferation and Neuroblast Differentiation in Adult and Aged Mice by Upregulating Brain-Derived Neurotrophic Factor and CREB Signaling

Sung Min Nam; Jung Hoon Choi; Dae Young Yoo; Woosuk Kim; Hyo Young Jung; Jong Whi Kim; Miyoung Yoo; Sanghee Lee; Chul Jung Kim; Yeo Sung Yoon; In Koo Hwang

Aging is a progressive process, and it may lead to the initiation of neurological diseases. In this study, we investigated the effects of wild Indian Curcuma longa using a Morris water maze paradigm on learning and spatial memory in adult and D-galactose-induced aged mice. In addition, the effects on cell proliferation and neuroblast differentiation were assessed by immunohistochemistry for Ki67 and doublecortin (DCX) respectively. The aging model in mice was induced through the subcutaneous administration of D-galactose (100 mg/kg) for 10 weeks. C. longa (300 mg/kg) or its vehicle (physiological saline) was administered orally to adult and D-galactose-treated mice for the last three weeks before sacrifice. The administration of C. longa significantly shortened the escape latency in both adult and D-galactose-induced aged mice and significantly ameliorated D-galactose-induced reduction of cell proliferation and neuroblast differentiation in the subgranular zone of hippocampal dentate gyrus. In addition, the administration of C. longa significantly increased the levels of phosphorylated CREB and brain-derived neurotrophic factor in the subgranular zone of dentate gyrus. These results indicate that C. longa mitigates D-galactose-induced cognitive impairment, associated with decreased cell proliferation and neuroblast differentiation, by activating CREB signaling in the hippocampal dentate gyrus.


Journal of the Neurological Sciences | 2012

Neuroprotective effects of adipose-derived stem cells against ischemic neuronal damage in the rabbit spinal cord

Jin Young Chung; Woosuk Kim; Wooseok Im; Dae Young Yoo; Jung Hoon Choi; In Koo Hwang; Moo-Ho Won; In Bok Chang; Byung Moon Cho; Hyung Sik Hwang; Seung Myung Moon

Transplantation of adipose-derived stem cells (ASCs) is one of the possible therapeutic tools for ischemic damage. In this study, we observed the effects of ASCs against ischemic damage in the ventral horn of L(5-6) levels in the rabbit spinal cord. ASCs were isolated from rabbits, and cell type was confirmed by flow cytometry analysis, labeling with CM-DiI dye and differentiation into adipocytes in adipogenesis differentiation medium. ASCs were administered intrathecally into recipient rabbits (2 × 10⁵) immediately after reperfusion following a 15-min aortic artery occlusion in the subrenal region. Transplantation of ASCs significantly improved functions of the hindlimb and morphology of the ventral horn of spinal cord although CM-DiI-labeled ASCs were not observed in the spinal cord parenchyma. In addition, transplantation of ASCs significantly increased brain-derived neurotrophic factor (BDNF) levels at 72h after ischemia/reperfusion. These results suggest that transplantation of ASCs prevents motor neurons from spinal ischemic damage and reactive gliosis by increasing neurotrophic factors such as BDNF in the spinal cord.


Neurological Research | 2013

Effects of luteolin on spatial memory, cell proliferation, and neuroblast differentiation in the hippocampal dentate gyrus in a scopolamine-induced amnesia model

Dae Young Yoo; Jung Hoon Choi; Woosuk Kim; Sung Min Nam; Hyo Young Jung; Jong Hwi Kim; Moo-Ho Won; Yeo Sung Yoon; In Koo Hwang

Abstract Objectives: Luteolin, a common flavonoid from many plants, has various pharmacological activities, including a memory-improving effect. In this study, we investigated the effects of luteolin on spatial memory, cell proliferation, and neuroblast differentiation in the hippocampal dentate gyrus in a rat model of scopolamine (SCO)-induced amnesia. Methods: Scopolamine was subcutaneously administered for 28 days via an Alzet minipump (44 mg/ml delivered at 2·5 μl/h) along with a daily intraperitoneal administration of vehicle (saline) 10 mg/kg luteolin or 5 mg/kg galantamine (GAL) (a control drug for acetylcholinesterase (AChE) inhibitor) for 28 days. Results: The administration of SCO significantly decreased the spatial alteration percentage in the Y-maze test compared to that in the vehicle (saline)-treated group. The administration of luteolin or GAL significantly improved the spatial alteration percentage compared to that in the SCO-treated group. Similarly, the administration of SCO significantly decreased the cell proliferation (Ki67-positive cells) and neuroblast differentiation (doubleocortin-positive cells) in the dentate gyrus. The administration of luteolin or GAL significantly mitigated the SCO-induced reduction of Ki67- and doublecortin-immunoreactive cells in the dentate gyrus. In addition, the administration of luteolin significantly decreased the lipid peroxidation (malondialdehyde (MDA) levels) and increased the brain-derived neurotrophic factor (BDNF) and AChE levels in the hippocampal homogenates compared to the SCO-treated group. Conclusion: These results suggest that the luteolin treatment improves the SCO-induced reduction of cell proliferation and neuroblast differentiation in the dentate gyrus. The mechanism underlying the amelioration of SCO-induced amnesia by luteolin may be associated with the increase in BDNF, acetylcholine, and the decrease in lipid peroxidation.


Experimental Gerontology | 2013

Valeriana officinalis extract and its main component, valerenic acid, ameliorate D-galactose-induced reductions in memory, cell proliferation, and neuroblast differentiation by reducing corticosterone levels and lipid peroxidation.

Sung Min Nam; Jung Hoon Choi; Dae Young Yoo; Woosuk Kim; Hyo Young Jung; Jong Whi Kim; Soo-Yong Kang; Jaeil Park; Dong-Woo Kim; Wan Jae Kim; Yeo Sung Yoon; In Koo Hwang

Valeriana officinalis is used in herbal medicine of many cultures as mild sedatives and tranquilizers. In this study, we investigated the effects of extract from valerian root extracts and its major component, valerenic acid on memory function, cell proliferation, neuroblast differentiation, serum corticosterone, and lipid peroxidation in adult and aged mice. For the aging model, D-galactose (100 mg/kg) was administered subcutaneously to 6-week-old male mice for 10 weeks. At 13 weeks of age, valerian root extracts (100 mg/kg) or valerenic acid (340 μg/kg) was administered orally to control and D-galactose-treated mice for 3 weeks. The dosage of valerenic acid (340 μg/kg), which is the active ingredient of valerian root extract, was determined by the content of valerenic acid in valerian root extract (3.401±0.066 mg/g) measured by HPLC. The administration of valerian root extract and valerenic acid significantly improved the preferential exploration of new objects in novel object recognition test and the escape latency, swimming speeds, platform crossings, and spatial preference for the target quadrant in Morris water maze test compared to the D-galactose-treated mice. Cell proliferation and neuroblast differentiation were significantly decreased, while serum corticosterone level and lipid peroxidation in hippocampus were significantly increased in the D-galactose-treated group compared to that in the control group. The administration of valerian root extract significantly ameliorated these changes in the dentate gyrus of both control and D-galactose-treated groups. In addition, valerenic acid also mitigated the D-galactose-induced reduction of these changes. These results indicate that valerian root extract and valerenic acid enhance cognitive function, promote cell proliferation and neuroblast differentiation, and reduce serum corticosterone and lipid peroxidation in aged mice.


Neurological Research | 2014

Activation of microglia and induction of pro-inflammatory cytokines in the hippocampus of type 2 diabetic rats

In Koo Hwang; Jung Hoon Choi; Sung Min Nam; Ok Kyu Park; Dae Young Yoo; Woosuk Kim; Sun Shin Yi; Moo-Ho Won; Je Kyung Seong; Yeo Sung Yoon

Abstract Objectives: The majority of immune cells in the brain are comprised of microglia, which undergo morphological changes when activated to remove damaged neurons and infectious agents from the brain tissue. In this study, we investigated the effects of type 2 diabetes on microglial activation and the subsequent secretion of pro-inflammatory cytokines, such as interferon-gamma (IFN-gamma) and interleukin-1beta (IL-1beta), in the hippocampus using Zucker diabetic fatty (ZDF) rats and Zucker lean control (ZLC) rats at various diabetic stages. Methods: Zucker lean control and Zucker diabetic fatty rats were sacrificed at 12 (early diabetic stage), 20, or 30 weeks of age (chronic diabetic stage), and the hippocampus was obtained via transcardiac perfusion or dissection for immunohistochemistry and western blot analysis, respectively. Results: Zucker diabetic fatty rats demonstrated significantly higher glucose levels at 12 and 30 weeks of age compared to ZLC rats. Microglia immunoreactive to ionized calcium-binding adapter molecule 1 (Iba-1) had hypertrophied cytoplasm with retracted processes at 30 weeks of age. In contrast, Iba-1-immunoreactive microglia displayed similar morphology in ZDF and ZLC rats at 12 and 20 weeks of age. Similarly, IFN-gamma and IL-1beta protein levels were significantly increased in ZDF rats compared to ZLC rats at 30 weeks of age, but not at 12 and 20 weeks of age. Interleukin-1beta immunoreactivity in the ZDF rats predominantly increased in the dentate gyrus and CA1 region of the hippocampus compared to that of ZLC rats at 30 weeks of age. In addition, IL-1beta immunoreactive structures in ZDF rats at 30 weeks of age were detected near the astrocytes and microglia. Conclusion: These results suggest that chronic diabetes activates microglia and significantly increases pro-inflammatory cytokine levels in the hippocampus.


Neurological Research | 2013

Chronological changes and effects of AMP-activated kinase in the hippocampal CA1 region after transient forebrain ischemia in gerbils.

Han Ga Wi Nam; Woosuk Kim; Dae Young Yoo; Jung Hoon Choi; Moo-Ho Won; In Koo Hwang; Je Hoon Jeong; Hyung Sik Hwang; Seung-Myung Moon

Abstract Objectives: Adenosine monophosphate-activated kinase (AMPK) is an energy-specific sensor within the central nervous system. In this study, we observed AMPK and its phosphorylated form (pAMPK) in the hippocampal CA1 region after 5 minutes of transient forebrain ischemia. In addition, we also investigated the effects of Compound C, an AMPK inhibitor, against ischemic damage in gerbils. Methods: Adenosine monophosphate-activated kinase and pAMPK immunoreactivity was observed in the hippocampal CA1 region at various time points after ischemia and Compound C was intraperitoneally administered to gerbils immediately after reperfusion and the animals were sacrificed at 5 days after ischemia/reperfusion. Results: Adenosine monophosphate-activated kinase immunoreactivity was transiently increased in the hippocampal CA1 region 1–2 days after ischemia/reperfusion, while AMPK immunoreactivity was almost undetectable in the stratum pyramidale of the CA1 region 4–7 days after ischemia/reperfusion. The administration of Compound C caused a dose-dependent decrease in the ischemia-induced hyperactive behavior, the depletion of ATP, and lactate accumulation in the hippocampal CA1 region within 24 hours after ischemia/reperfusion. In addition, the administration of Compound C decreased reactive gliosis (astrocytes and microglia) and increased the number of cresyl violet-positive neurons when compared to the vehicle-treated group at 5 days post-ischemia/reperfusion. Conclusion: These results suggest that AMPK is transiently phosphorylated following forebrain ischemia in the hippocampal CA1 region and inhibition of AMPK has neuroprotective effects against ischemic damage through the reduction of ATP depletion and lactate accumulation in the hippocampal CA1 region.


Phytotherapy Research | 2011

Effects of Nelumbo nucifera Rhizome Extract on Cell Proliferation and Neuroblast Differentiation in the Hippocampal Dentate Gyrus in a Scopolamine‐induced Amnesia Animal Model

Dae Young Yoo; Woosuk Kim; Ki-Yeon Yoo; Choong Hyun Lee; Jung Hoon Choi; Il-Jun Kang; Yeo Sung Yoon; Dong-Woo Kim; Moo-Ho Won; In Koo Hwang

A large aquatic herb, Nelumbo nucifera Gaertn, has psychopharmacological effects similar to minor tranquillizers and antistress agents. This study examined the effects of Nelumbo nucifera rhizome extracts (NRE) on cell proliferation and neuroblast differentiation in the hippocampal dentate gyrus (DG) of a rat model of scopolamine‐induced amnesia. Immunohistochemical markers included Ki67, an endogenous marker for active cell cycle, and doublecortin (DCX), a marker for immature neurons and migratory neuroblasts. Scopolamine was administered for 28 days via an ALzet minipump (44 mg/mL delivered at 2.5 µL/h). NRE was administered by gavage, 1 g/kg per day for 28 days. The administration of scopolamine significantly reduced the number of Ki67‐ and DCX‐immunoreactive cells in the DG, whereas scopolamine did not induce any significant changes in mature neurons in the DG. The administration of NRE significantly ameliorated the scopolamine‐induced reduction of Ki67‐ and DCX‐immunoreactive cells in the DG. In addition, the administration of NRE significantly restored the scopolamine‐induced reduction of brain‐derived neurotrophic factor in DG homogenates. These results suggest that NRE can ameliorate the scopolamine‐induced reductions of cell proliferation, neuroblast differentiation and BDNF levels. Copyright


Phytotherapy Research | 2011

Grape seed extract enhances neurogenesis in the hippocampal dentate gyrus in C57BL/6 mice.

Dae Young Yoo; Woosuk Kim; Ki-Yeon Yoo; Choong Hyun Lee; Jung Hoon Choi; Yeo Sung Yoon; Dong-Woo Kim; Moo-Ho Won; In Koo Hwang

The effects of grape seed extract (GSE), a major source of phenolic compounds, were examined on cell proliferation, neuroblast differentiation and integration into granule cells in the hippocampal dentate gyrus (DG) of middle‐aged (12 month‐old) mice using Ki67, doublecortin (DCX) immunohistochemistry and 5′‐bromo‐2‐deoxyguanosine (BrdU)/calbindin D‐28k (CB) double immunofluorescence study, respectively. GSE (25, 50 and 100 mg/kg) was administered orally for 28 days, and the animals were treated with 50 mg/kg BrdU intraperitoneally on the day of first GSE treatment. In the vehicle‐treated group, Ki67 and DCX immunoreactivity was detected in the subgranular zone of the DG (SZDG). GSE treatment dose‐dependently increased the number of Ki67 and DCX immunoreactive cells, particularly the number of DCX immunoreactive neuroblasts with well‐developed (tertiary) dendrites. GSE also dose‐dependently increased DCX protein levels. In addition, GSE treatment increased significantly the number of BrdU/CB double labeled granule cells. These results suggest that GSE significantly increases cell proliferation, neuroblast differentiation and integration into granule cells in the DG, and the consumption of GSE enhances the plasticity of hippocampus in middle‐aged mice. Copyright


Pediatric Radiology | 1994

Castleman disease in the child: CT and ultrasound findings

Woo Kyung Moon; Woosuk Kim; In-One Kim; K. M. Yeon; Moon-Ku Han

Castleman disease is a relatively rare disorder affecting young adults. We present the CT and ultrasonographic findings of Castleman disease in two children. In one patient with hyaline-vascular type disease, CT showed a well-enhancing mass in the right paratracheal area. In a second patient with plasma cell type disease, there was a solid, homogeneous mass in the retroperitoneal space which was poorly enhancing. Ultrasound showed a uniform hypoechogenic mass in both cases.

Collaboration


Dive into the Woosuk Kim's collaboration.

Top Co-Authors

Avatar

In Koo Hwang

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Dae Young Yoo

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Yeo Sung Yoon

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Moo-Ho Won

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar

Jung Hoon Choi

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar

Sung Min Nam

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hyo Young Jung

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jong Whi Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

In-One Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge