Wooyong Um
Pohang University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wooyong Um.
Environmental Science & Technology | 2011
Wooyong Um; Hyun-Shik Chang; Jonathan P. Icenhower; Wayne W. Lukens; R. Jeffrey Serne; Nikolla P. Qafoku; Joseph H. Westsik; Edgar C. Buck; Steven C. Smith
During the nuclear waste vitrification process volatilized (99)Tc will be trapped by melter off-gas scrubbers and then washed out into caustic solutions, and plans are currently being contemplated for the disposal of such secondary waste. Solutions containing pertechnetate [(99)Tc(VII)O(4)(-)] were mixed with precipitating goethite and dissolved Fe(II) to determine if an iron (oxy)hydroxide-based waste form can reduce Tc(VII) and isolate Tc(IV) from oxygen. The results of these experiments demonstrate that Fe(II) with goethite efficiently catalyzes the reduction of technetium in deionized water and complex solutions that mimic the chemical composition of caustic waste scrubber media. Identification of the phases, goethite + magnetite, was performed using XRD, SEM and TEM methods. Analyses of the Tc-bearing solid products by XAFS indicate that all of the Tc(VII) was reduced to Tc(IV) and that the latter is incorporated into goethite or magnetite as octahedral Tc(IV). Batch dissolution experiments, conducted under ambient oxidizing conditions for more than 180 days, demonstrated a very limited release of Tc to solution (2-7 μg Tc/g solid). Incorporation of Tc(IV) into the goethite lattice thus provides significant advantages for limiting reoxidation and curtailing release of Tc disposed in nuclear waste repositories.
Environmental Science & Technology | 2013
Brian J. Riley; Jaehun Chun; Wooyong Um; William C. Lepry; Josef Matyas; Matthew J. Olszta; Xiaohong Li; Kyriaki Polychronopoulou; Mercouri G. Kanatzidis
The efficient capture of radionuclides with long half-lives such as technetium-99 ((99)Tc), uranium-238 ((238)U), and iodine-129 ((129)I) is pivotal to prevent their transport into groundwater and/or release into the atmosphere. While different sorbents have been considered for capturing each of them, in the current work, nanostructured chalcogen-based aerogels called chalcogels are shown to be very effective at capturing ionic forms of (99)Tc and (238)U, as well as nonradioactive gaseous iodine (i.e., a surrogate for (129)I2), irrespective of the sorbent polarity. The chalcogel chemistries studied were Co0.7Bi0.3MoS4, Co0.7Cr0.3MoS4, Co0.5Ni0.5MoS4, PtGe2S5, and Sn2S3. The PtGe2S5 sorbent performed the best overall with capture efficiencies of 98.0% and 99.4% for (99)Tc and (238)U, respectively, and >99.0% for I2(g) over the duration of the experiment. The capture efficiencies for (99)Tc and (238)U varied between the different sorbents, ranging from 57.3-98.0% and 68.1-99.4%, respectively. All chalcogels showed >99.0% capture efficiency for iodine over the test duration. This versatile nature of chalcogels can provide an attractive option for the environmental remediation of the radionuclides associated with legacy wastes from nuclear weapons production as well as wastes generated during nuclear power production or nuclear fuel reprocessing.
Journal of Hazardous Materials | 2011
Byoung Chan Kim; Jinwoo Lee; Wooyong Um; Jaeyun Kim; Jin Joo; Jin Hyung Lee; Ja Hun Kwak; Jae Hyun Kim; Changha Lee; Hongshin Lee; R. Shane Addleman; Taeghwan Hyeon; Man Bock Gu; Jungbae Kim
We have synthesized two different magnetic mesoporous materials that can be easily separated from aqueous solutions by applying a magnetic field. Synthesized magnetic mesoporous materials, Mag-SBA-15 (magnetic ordered mesoporous silica) and Mag-OMC (magnetic ordered mesoporous carbon), have a high loading capacity of contaminants due to high surface area of the supports and high magnetic activity due to the embedded iron oxide particles. Application of surface-modified Mag-SBA-15 was investigated for the collection of mercury from water. The mercury adsorption using Mag-SBA-15 was rapid during the initial contact time and reached a steady-state condition, with an uptake of approximately 97% after 7h. Application of Mag-OMC for collection of organics from water, using fluorescein as an easily trackable model analyte, was explored. The fluorescein was absorbed into Mag-OMC within minutes and the fluorescent intensity of solution was completely disappeared after an hour. In another application, Mag-SBA-15 was used as a host of tyrosinase, and employed as recyclable catalytic scaffolds for tyrosinase-catalyzed biodegradation of catechol. Crosslinked tyrosinase in Mag-SBA-15, prepared in a two step process of tyrosinase adsorption and crosslinking, was stable enough for catechol degradation with no serious loss of enzyme activity. Considering these results of cleaning up water from toxic inorganic and organic contaminants, magnetic mesoporous materials have a great potential to be employed for the removal of environmental contaminants and potentially for the application in large-scale wastewater treatment plants.
Archive | 2007
Bruce A. Williams; Christopher F. Brown; Wooyong Um; Michael J. Nimmons; Robert E. Peterson; Bruce N. Bjornstad; David C. Lanigan; R. Jeffrey Serne; Frank A. Spane; Mark L. Rockhold
Four new CERCLA groundwater monitoring wells were installed in the 300-FF-5 Operable Unit in FY 2006 to fulfill commitments for well installations proposed in the Hanford Federal Facility Agreement and Consent Order Milestone M-24-57. Wells were installed to collect data to determine the distribution of process uranium and other contaminants of potential concern in groundwater. These data will also support uranium contaminant transport simulations and the wells will supplement the water quality monitoring network for the 300-FF-5 OU. This report supplies the information obtained during drilling, characterization, and installation of the new groundwater monitoring wells. This document also provides a compilation of hydrogeologic, geochemical, and well construction information obtained during drilling, well development, and sample collection/analysis activities.
Radiochimica Acta | 2005
Wooyong Um; R. Jeffrey Serne
Abstract A series of batch sorption and column experiments was conducted to investigate sorption and transport behavior of 99Tc, 129I, 79Se, and 90Sr on and through borehole sediments collected from the proposed low-level radioactive waste disposal facility at the Hanford Site (200 East Area). Batch sorption experiments were conducted on Hanford sediment using uncontaminated Hanford groundwater and simulated glass leachates spiked with individual radionuclides. Strongest sorption occurred for 90Sr, while 79Se sorption was intermediate, and 129I and 99Tc showed the least sorption affinities on Hanford sediment among these radionuclides studied. The results of column experiments that measured transport behavior of these radionuclides through Hanford sediment were similar to the mobility that can be calculated from the batch sorption results, that is high mobility for 99Tc and 129I compared to the intermediate and strong retardation for 79Se and 90Sr, respectively. These contaminant sorption data on sediments from below the proposed disposal facility, especially the tests using simulated glass leachate, corroborate values obtained for sediments collected in the past from near by locations and for generic solutions such as regional groundwater. These new data should provide more technical defensibility for past performance assessment predictions that did not use site-specific sediments and leachates. Further, the new data will be incorporated into future performance assessment activities that will update and improve past predictions.
Environmental Science & Technology | 2013
Hun Bok Jung; Danielle Jansik; Wooyong Um
X-ray microtomography (XMT), a nondestructive three-dimensional imaging technique, was applied to demonstrate its capability to visualize the mineralogical alteration and microstructure changes in hydrated Portland cement exposed to carbon dioxide under geologic sequestration conditions. Steel coupons and basalt fragments were added to the cement paste in order to simulate cement-steel and cement-rock interfaces. XMT image analysis showed the changes of material density and porosity in the degradation front (density: 1.98 g/cm(3), porosity: 40%) and the carbonated zone (density: 2.27 g/cm(3), porosity: 23%) after reaction with CO(2)-saturated water for 5 months compared to unaltered cement (density: 2.15 g/cm(3), porosity: 30%). Three-dimensional XMT imaging was capable of displaying spatially heterogeneous alteration in cement pores, calcium carbonate precipitation in cement cracks, and preferential cement alteration along the cement-steel and cement-rock interfaces. This result also indicates that the interface between cement and host rock or steel casing is likely more vulnerable to a CO(2) attack than the cement matrix in a wellbore environment. It is shown here that XMT imaging can potentially provide a new insight into the physical and chemical degradation of wellbore cement by CO(2) leakage.
Colloids and Surfaces A: Physicochemical and Engineering Aspects | 2003
Charalambos Papelis; Wooyong Um; Charles E. Russell; Jenny B. Chapman
The specific surface area of natural and manmade solid materials is a key parameter controlling important interfacial processes in natural environments and engineered systems, including dissolution reactions and sorption processes at solid/fluid interfaces. To improve our ability to quantify the release of trace elements trapped in natural glasses, the release of hazardous compounds trapped in manmade glasses, or the release of radionuclides from nuclear melt glass, we measured the specific surface area of natural and manmade glasses as a function of particle size, morphology, and composition. Volcanic ash, volcanic tuff, tektites, obsidian glass, and in situ vitrified rock were analyzed. Specific surface area estimates were obtained using krypton as gas adsorbent and the BET model. The range of surface areas measured exceeded three orders of magnitude. A tektite sample had the highest surface area (1.65 m 2 g 1 ), while one of the samples of in situ vitrified rock had the lowest surface area (0.0016 m 2 g 1 ). The specific surface area of the samples was a function of particle size, decreasing with increasing particle size. Different types of materials, however, showed variable dependence on particle size, and could be assigned to one of three distinct groups: (1) Samples with low surface area dependence on particle size and surface areas approximately two orders of magnitude higher than the surface area of smooth spheres of equivalent size. The specific surface area of these materials was attributed mostly to internal porosity and surface roughness. (2) Samples that showed a trend of decreasing surface area dependence on particle size as the particle size increased. The minimum specific surface area of these materials was between 0.1 and 0.01 m 2 g 1 and was also attributed to internal porosity and surface roughness. (3) Samples whose surface area showed a monotonic decrease with increasing particle size, never reaching an ultimate surface area limit within the particle size range examined. The surface area results were consistent with particle morphology, examined by scanning electron microscopy, and have significant implications for the release of radionuclides and toxic metals in the environment. # 2002 Elsevier Science B.V. All rights reserved.
Environmental Science & Technology | 2010
Kenton A. Rod; Wooyong Um; Markus Flury
We investigated the effects of water saturation and secondary precipitate formation on Sr and Cs transport through quartz sand columns under saturated and unsaturated flow. Column experiments were conducted at effective water saturation ranging from 0.2 to 1.0 under steady-state flow using either 0.1 M NaNO(3) or simulated tank waste leachate (STWL; 1 M NaNO(3) and 1 M NaOH) mimicking Hanford (Washington, USA) tank waste. In 0.1 M NaNO(3) columns, Sr transported like a conservative tracer, whereas Cs was retarded relative to Sr. The transport of Sr and Cs in the 0.1 M NaNO(3) columns under all water saturations could be described with the equilibrium convection-dispersion equation (CDE). In STWL columns, Sr mobility was significantly reduced compared to the 0.1 M NaNO(3) column, because Sr was incorporated into or sorbed to neo-formed secondary precipitates. Strontium sequestration by precipitates was confirmed by additional batch and electron micrograph analyses. In contrast(,) the transport of Cs was less affected by the STWL; retardation of Cs in STWL columns was similar to that found in 0.1 M NaNO(3) columns. Analysis of STWL column data revealed that both Sr and Cs breakthrough curves showed nonideal behavior that suggest nonequilibrium conditions, although nonlinear geochemical behavior cannot be ruled out.
Environmental Science & Technology | 2014
Sungwook Choung; Min Kyung Kim; Jung-Seok Yang; Min-Gyu Kim; Wooyong Um
Bentonite, which is used as an engineered barrier in geological repositories, is ineffective for sorbing anionic radionuclides because of its negatively charged surface. This study modified raw bentonite using a cationic surfactant (i.e., hexadecyltrimethylammonium [HDTMA]-Br) to improve its sorption capability for radioactive iodide. The effects of temperature and radiation on the iodide sorption of surfactant-modified bentonite (SMB) were also evaluated under alkaline pH condition similar to that found in repository environments. Different amounts of surfactant, equivalent to the 50, 100, and 200% cation-exchange capacity of the bentonite, were used to produce the HDTMA-SMB for iodide sorption. The sorption reaction of the SMB with iodide reached equilibrium rapidly within 10 min regardless of temperature and radiation conditions. The rate of iodide sorption increased as the amount of the added surfactant was increased and nonlinear sorption behavior was exhibited. However, high temperature and γ-irradiation ((60)Co) resulted in significantly (∼2-10 times) lower iodide Kd values for the SMB. The results of FTIR, NMR, and XANES spectroscopy analysis suggested that the decrease in iodide sorption may be caused by weakened physical electrostatic force between the HDTMA and iodide, and by the surfactant becoming detached from the SMB during the heating and irradiation processes.
Journal of Contaminant Hydrology | 2012
L.E. Crandell; Catherine A. Peters; Wooyong Um; K.W. Jones; W.B. Lindquist
At the former nuclear weapon production site in Hanford, WA, caustic radioactive tank waste leaks into subsurface sediments and causes dissolution of quartz and aluminosilicate minerals, and precipitation of sodalite and cancrinite. This work examines changes in pore structure due to these reactions in a previously-conducted column experiment. The column was sectioned and 2D images of the pore space were generated using backscattered electron microscopy and energy dispersive X-ray spectroscopy. A pre-precipitation scenario was created by digitally removing mineral matter identified as secondary precipitates. Porosity, determined by segmenting the images to distinguish pore space from mineral matter, was up to 0.11 less after reaction. Erosion-dilation analysis was used to compute pore and throat size distributions. Images with precipitation had more small and fewer large pores. Precipitation decreased throat sizes and the abundance of large throats. These findings agree with previous findings based on 3D X-ray CMT imaging, observing decreased porosity, clogging of small throats, and little change in large throats. However, 2D imaging found an increase in small pores, mainly in intragranular regions or below the resolution of the 3D images. Also, an increase in large pores observed via 3D imaging was not observed in the 2D analysis. Changes in flow conducting throats that are the key permeability-controlling features were observed in both methods.