Wouter A. Duetz
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wouter A. Duetz.
Applied and Environmental Microbiology | 2000
Wouter A. Duetz; Lorenz Rüedi; Robert Hermann; Kevin E. O'Connor; Jochen Büchs; Bernard Witholt
ABSTRACT Miniaturized growth systems for heterogeneous culture collections are not only attractive in reducing demands for incubation space and medium but also in making the parallel handling of large numbers of strains more practicable. We report here on the optimization of oxygen transfer rates in deep-well microtiter plates and the development of a replication system allowing the simultaneous and reproducible sampling of 96 frozen glycerol stock cultures while the remaining culture volume remains frozen. Oxygen transfer rates were derived from growth curves of Pseudomonas putida and from rates of oxygen disappearance due to the cobalt-catalyzed oxidation of sulfite. Maximum oxygen transfer rates (38 mmol liter−1 h−1, corresponding to a mass transfer coefficient of 188 h−1) were measured during orbital shaking at 300 rpm at a shaking diameter of 5 cm and a culture volume of 0.5 ml. A shaking diameter of 2.5 cm resulted in threefold-lower values. These high oxygen transfer rates allowed P. putida to reach a cell density of approximately 9 g (dry weight) liter−1 during growth on a glucose mineral medium at culture volumes of up to 1 ml. The growth-and-replication system was evaluated for a culture collection consisting of aerobic strains, mainly from the generaPseudomonas, Rhodococcus, andAlcaligenes, using mineral media and rich media. Cross-contamination and excessive evaporation during vigorous aeration were adequately prevented by the use of a sandwich cover of spongy silicone and cotton wool on top of the microtiter plates.
Trends in Biotechnology | 2003
Jan B. van Beilen; Wouter A. Duetz; Andreas Schmid; Bernard Witholt
Oxygenases carry out the regio-, stereo- and chemoselective introduction of oxygen in a tremendous range of organic molecules. This versatility has already been exploited in several commercial processes. There are, however, many hurdles to further practical large-scale applications. Here, we review various issues in biocatalysis using these enzymes, such as screening strategies, overoxidation, uncoupling, substrate uptake, substrate toxicity, and oxygen mass transfer. By addressing these issues in a systematic way, the productivity of promising laboratory scale biotransformations involving oxygenases may be improved to levels that allow industry to realise the full commercial potential of these enzymes.
Current Opinion in Biotechnology | 2001
Wouter A. Duetz; Jan B. van Beilen; Bernard Witholt
The unique catalytic properties of oxygenases (the regio-specific and/or enantio-specific hydroxylation of non-activated carbons) are of undisputed biosynthetic value. Factors that govern the economics of their industrial use include a low k(cat), a frequently decreased k(cat) in recombinant strains, limiting oxygen transfer rates in bioreactors, product inhibition, and the demanding discovery (screening) process.
Current Opinion in Chemical Biology | 2002
Zhi Li; Jan B. van Beilen; Wouter A. Duetz; Andreas Schmid; Anna de Raadt; Herfried Griengl; Bernard Witholt
Considerable progress has been made in manipulating oxidative biotransformations using oxygenases. Substrate acceptance, catalytic activity, regioselectivity and stereoselectivity have been improved significantly by substrate engineering, enzyme engineering or biocatalyst screening. Preparative biotransformations have been carried out to synthesize useful pharmaceutical intermediates or chiral synthons on the gram to several-hundred-gram scale, by use of whole cells of wild type or recombinant strains. The synthetic application of oxygenases in vitro has been shown to be possible by enzymatic or electrochemical regeneration of NADH or NADPH.
Applied and Environmental Microbiology | 2005
Jan B. van Beilen; René Holtackers; Daniel Lüscher; Ulrich Bauer; Bernard Witholt; Wouter A. Duetz
ABSTRACT A number of oxygenated monoterpenes present at low concentrations in plant oils have anticarcinogenic properties. One of the most promising compounds in this respect is (−)-perillyl alcohol. Since this natural product is present only at low levels in a few plant oils, an alternative, synthetic source is desirable. Screening of 1,800 bacterial strains showed that many alkane degraders were able to specifically hydroxylate l-limonene in the 7 position to produce enantiopure (−)-perillyl alcohol. The oxygenase responsible for this was purified from the best-performing wild-type strain, Mycobacterium sp. strain HXN-1500. By using N-terminal sequence information, a 6.2-kb ApaI fragment was cloned, which encoded a cytochrome P450, a ferredoxin, and a ferredoxin reductase. The three genes were successfully coexpressed in Pseudomonas putida by using the broad-host-range vector pCom8, and the recombinant converted limonene to perillyl alcohol with a specific activity of 3 U/g (dry weight) of cells. The construct was subsequently used in a 2-liter bioreactor to produce perillyl alcohol on a scale of several grams.
Biochemical Engineering Journal | 2001
Wouter A. Duetz; Bernard Witholt
Growth of heterogeneous culture collections in microtiter plates is advantageous for logistic reasons and also in enabling significant savings in medium costs, labor input and use of equipment during large screening projects. The main hurdles to overcome for aerobic microbial strains are the prevention of cross-contamination and excessive evaporation while assuring sufficient aeration rates. For this purpose we developed a sandwich spongy silicone/cotton wool cover to close the wells of square-deepwell microtiter plates. Oxygen transfer rates were derived from growth curves of Pseudomonas putida and were shown to be threefold higher during orbital shaking at a shaking diameter of 5cm at 300rpm (24mmolO(2)l(-1)h(-1) at a culture volume of 0.75ml) in comparison to a shaking diameter of 2.5cm. Photographic analysis showed a clear influence of the shaking diameter on the hydrodynamic behavior in the wells; during shaking at a 2.5cm amplitude, out-of-phase conditions occurred resulting in poor vertical mixing, while a 5cm shaking amplitude led to an optimal surface to volume ratio and a turbulent flow.
Microbiology | 2001
Niall D. O'Leary; Kevin E. O'Connor; Wouter A. Duetz; Alan D. W. Dobson
The styrene degradative pathway in Pseudmonas putida CA-3 has previously been shown to be divided into an upper pathway involving the conversion of styrene to phenylacetic acid and a lower pathway for the subsequent degradation of phenylacetic acid. It is reported here that expression of the regulatory genes styS and styR is essential for transcription of the upper pathway, but not for degradation of the lower pathway inducer, phenylacetic acid. The presence of phenylacetic acid in the growth medium completely repressed the upper pathway enzymes even in the presence of styrene, the upper pathway inducer. This repression is mediated at the transcription level by preventing expression of the styS and styR regulatory genes. Finally, an examination was made of the various stages of the diauxic growth curve obtained when P. putida CA-3 was grown on styrene together with an additional carbon source and it is reported that catabolite repression may involve a different mechanism to transcriptional repression by an additional carbon source.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2000
Wolfgang Minas; James E. Bailey; Wouter A. Duetz
Mycelium-forming Streptomyces strains were grown in one milliliter liquid micro-cultures in square deep-well microtiter plates. Growth was evaluated with respect to biomass formation and production of secondary metabolites which were found to be very similar in the micro-cultures, bioreactor, and shake flask cultivations, respectively. Despite repetitive sampling and extensive growth on the walls of the wells, no cross contamination occurred. Furthermore, we successfully employed cold storage at −20 °C of spore suspensions (in the 96–well format), directly prepared from cultures grown on agar in the microtitre plate. Cultures were retrieved by replicating aliquots from the frozen spore suspensions.
Applied and Environmental Microbiology | 2001
Wouter A. Duetz; Ann H. M. Fjällman; Shuyu Ren; Catherine Jourdat; Bernard Witholt
ABSTRACT The toluene-degrading strain Rhodococcus opacus PWD4 was found to hydroxylate d-limonene exclusively in the 6-position, yielding enantiomerically pure (+)trans-carveol and traces of (+) carvone. This biotransformation was studied using cells cultivated in chemostat culture with toluene as a carbon and energy source. The maximal specific activity of (+) trans-carveol formation was 14.7 U (g of cells [dry weight])−1, and the final yield was 94 to 97%. Toluene was found to be a strong competitive inhibitor of thed-limonene conversion. Glucose-grown cells did not form anytrans-carveol from d-limonene. These results suggest that one of the enzymes involved in toluene degradation is responsible for this allylic monohydroxylation. Another toluene degrader (Rhodococcus globerulus PWD8) had a lower specific activity but was found to oxidize most of the formedtrans-carveol to (+) carvone, allowing for the biocatalytic production of this flavor compound.
Tetrahedron-asymmetry | 1999
Zhi Li; Hans‐Juergen Feiten; Jan B. van Beilen; Wouter A. Duetz; Bernard Witholt
Abstract Hydroxylation of N -benzylpyrrolidine 2 with Pseudomonas oleovorans GPo1 afforded 62% of ( R )- N -benzyl-3-hydroxypyrrolidine 3 in 52% e.e. This reaction was catalyzed by the alkane hydroxylase system in this strain, which was demonstrated by hydroxylation of 2 with Escherichia coli GEc137 (pGEc47), a recombinant strain that carries the genes for the alkane hydroxylase system of P. oleovorans GPo1. In a set of 70 alkane-degrading microorganisms, 12 were found to catalyze the biotransformation of 2 into 3 by screening with a microtiter plate technique. Hydroxylation of 2 with isolates HXN-1100 and HXN-200 gave 67% of ( R )- 3 in 70% e.e. and 62% of ( S )- 3 in 53% e.e., respectively.