Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wouter Dorigo is active.

Publication


Featured researches published by Wouter Dorigo.


International Journal of Applied Earth Observation and Geoinformation | 2007

A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling

Wouter Dorigo; Raul Zurita-Milla; A.J.W. de Wit; Jason Brazile; Ranvir Singh; Michael E. Schaepman

Abstract During the last 50 years, the management of agroecosystems has been undergoing major changes to meet the growing demand for food, timber, fibre and fuel. As a result of this intensified use, the ecological status of many agroecosystems has been severely deteriorated. Modeling the behavior of agroecosystems is, therefore, of great help since it allows the definition of management strategies that maximize (crop) production while minimizing the environmental impacts. Remote sensing can support such modeling by offering information on the spatial and temporal variation of important canopy state variables which would be very difficult to obtain otherwise. In this paper, we present an overview of different methods that can be used to derive biophysical and biochemical canopy state variables from optical remote sensing data in the VNIR-SWIR regions. The overview is based on an extensive literature review where both statistical–empirical and physically based methods are discussed. Subsequently, the prevailing techniques of assimilating remote sensing data into agroecosystem models are outlined. The increasing complexity of data assimilation methods and of models describing agroecosystem functioning has significantly increased computational demands. For this reason, we include a short section on the potential of parallel processing to deal with the complex and computationally intensive algorithms described in the preceding sections. The studied literature reveals that many valuable techniques have been developed both for the retrieval of canopy state variables from reflective remote sensing data as for assimilating the retrieved variables in agroecosystem models. However, for agroecosystem modeling and remote sensing data assimilation to be commonly employed on a global operational basis, emphasis will have to be put on bridging the mismatch between data availability and accuracy on one hand, and model and user requirements on the other. This could be achieved by integrating imagery with different spatial, temporal, spectral, and angular resolutions, and the fusion of optical data with data of different origin, such as LIDAR and radar/microwave.


Nature | 2012

Afternoon rain more likely over drier soils

Christopher M. Taylor; Richard de Jeu; Françoise Guichard; Phil P. Harris; Wouter Dorigo

Land surface properties, such as vegetation cover and soil moisture, influence the partitioning of radiative energy between latent and sensible heat fluxes in daytime hours. During dry periods, soil-water deficit can limit evapotranspiration, leading to warmer and drier conditions in the lower atmosphere. Soil moisture can influence the development of convective storms through such modifications of low-level atmospheric temperature and humidity, which in turn feeds back on soil moisture. Yet there is considerable uncertainty in how soil moisture affects convective storms across the world, owing to a lack of observational evidence and uncertainty in large-scale models. Here we present a global-scale observational analysis of the coupling between soil moisture and precipitation. We show that across all six continents studied, afternoon rain falls preferentially over soils that are relatively dry compared to the surrounding area. The signal emerges most clearly in the observations over semi-arid regions, where surface fluxes are sensitive to soil moisture, and convective events are frequent. Mechanistically, our results are consistent with enhanced afternoon moist convection driven by increased sensible heat flux over drier soils, and/or mesoscale variability in soil moisture. We find no evidence in our analysis of a positive feedback—that is, a preference for rain over wetter soils—at the spatial scale (50–100 kilometres) studied. In contrast, we find that a positive feedback of soil moisture on simulated precipitation does dominate in six state-of-the-art global weather and climate models—a difference that may contribute to excessive simulated droughts in large-scale models.


Journal of Hydrometeorology | 2013

Skill and global trend analysis of soil moisture from reanalysis and microwave remote sensing

Clément Albergel; Wouter Dorigo; Rolf H. Reichle; Gianpaolo Balsamo; P. de Rosnay; J. Muñoz-Sabater; I Isaksen; R.A.M. de Jeu; W. Wagner

AbstractIn situ soil moisture measurements from 2007 to 2010 for 196 stations from five networks across the world (United States, France, Spain, China, and Australia) are used to determine the reliability of three soil moisture products: (i) a revised version of the ECMWF Interim Re-Analysis (ERA-Interim; ERA-Land); (ii) a revised version of the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis from NASA (MERRA-Land); and (iii) a new, microwave-based multisatellite surface soil moisture dataset (SM-MW). Evaluation of the time series and anomalies from a moving monthly mean shows a good performance of the three products in capturing the annual cycle of surface soil moisture and its short-term variability. On average, correlations (95% confidence interval) are 0.66 (±0.038), 0.69 (±0.038), and 0.60 (±0.061) for ERA-Land, MERRA-Land, and SM-MW. The two reanalysis products also capture the root-zone soil moisture well; on average, correlations are 0.68 (±0.035) and 0.73 (±0.03...


Journal of Geophysical Research | 2014

Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data

Luca Brocca; Luca Ciabatta; Christian Massari; Tommaso Moramarco; Sebastian Hahn; Stefan Hasenauer; Richard Kidd; Wouter Dorigo; W. Wagner; Vincenzo Levizzani

Measuring precipitation intensity is not straightforward; and over many areas, ground observations are lacking and satellite observations are used to fill this gap. The most common way of retrieving rainfall is by addressing the problem “top-down” by inverting the atmospheric signals reflected or radiated by atmospheric hydrometeors. However, most applications are interested in how much water reaches the ground, a problem that is notoriously difficult to solve from a top-down perspective. In this study, a novel “bottom-up” approach is proposed that, by doing “hydrology backward,” uses variations in soil moisture (SM) sensed by microwave satellite sensors to infer preceding rainfall amounts. In other words, the soil is used as a natural rain gauge. Three different satellite SM data sets from the Advanced SCATterometer (ASCAT), the Advanced Microwave Scanning Radiometer (AMSR-E), and the Microwave Imaging Radiometer with Aperture Synthesis are used to obtain three new daily global rainfall products. The “First Guess Daily” product of the Global Precipitation Climatology Centre (GPCC) is employed as main benchmark in the validation period 2010–2011 for determining the continuous and categorical performance of the SM-derived rainfall products by considering the 5 day accumulated values. The real-time version of the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis product, i.e., the TRMM-3B42RT, is adopted as a state-of-the-art satellite rainfall product. The SM-derived rainfall products show good Pearson correlation values (R) with the GPCC data set, mainly in areas where SM retrievals are found to be accurate. The global median R values (in the latitude band ±50°) are equal to 0.54, 0.28, and 0.31 for ASCAT-, AMSR-E-, and SMOS-derived products, respectively. For comparison, the median R for the TRMM-3B42RT product is equal to 0.53. Interestingly, the SM-derived products are found to outperform TRMM-3B42RT in terms of average global root-mean-square error statistics and in terms of detection of rainfall events. The regions for which the SM-derived products perform very well are Australia, Spain, South and North Africa, India, China, the Eastern part of South America, and the central part of the United States. The SM-derived products are found to estimate accurately the rainfall accumulated over a 5 day period, an aspect particularly important for their use for hydrological applications, and that address the difficulties of estimating light rainfall from TRMM-3B42RT.


IEEE Geoscience and Remote Sensing Letters | 2011

Error Estimates for Near-Real-Time Satellite Soil Moisture as Derived From the Land Parameter Retrieval Model

R.M. Parinussa; A.G.C.A. Meesters; Yi Y. Liu; Wouter Dorigo; W. Wagner; R.A.M. de Jeu

A time-efficient solution to estimate the error of satellite surface soil moisture from the land parameter retrieval model is presented. The errors are estimated using an analytical solution for soil moisture retrievals from this radiative-transfer-based model that derives soil moisture from low-frequency passive microwave observations. The error estimate is based on a basic error propagation equation which uses the partial derivatives of the radiative transfer equation and estimated errors for each individual input parameter. Results similar to those of the Monte Carlo approach show that the developed time-efficient methodology could substitute computationally intensive methods. This procedure is therefore a welcome solution for near-real-time data assimilation studies where both the soil moisture product and error estimate are needed. The developed method is applied to the C-, X-, and Ku-bands of the Aqua/Advanced Microwave Scanning Radiometer for Earth Observing System sensor to study differences in errors between frequencies.


International Journal of Applied Earth Observation and Geoinformation | 2016

Recent advances in (soil moisture) triple collocation analysis

Alexander Gruber; Chun-Hsu Su; Simon Zwieback; Wade T. Crow; Wouter Dorigo; W. Wagner

Abstract To date, triple collocation (TC) analysis is one of the most important methods for the global-scale evaluation of remotely sensed soil moisture data sets. In this study we review existing implementations of soil moisture TC analysis as well as investigations of the assumptions underlying the method. Different notations that are used to formulate the TC problem are shown to be mathematically identical. While many studies have investigated issues related to possible violations of the underlying assumptions, only few TC modifications have been proposed to mitigate the impact of these violations. Moreover, assumptions, which are often understood as a limitation that is unique to TC analysis are shown to be common also to other conventional performance metrics. Noteworthy advances in TC analysis have been made in the way error estimates are being presented by moving from the investigation of absolute error variance estimates to the investigation of signal-to-noise ratio (SNR) metrics. Here we review existing error presentations and propose the combined investigation of the SNR (expressed in logarithmic units), the unscaled error variances, and the soil moisture sensitivities of the data sets as an optimal strategy for the evaluation of remotely-sensed soil moisture data sets.


Journal of Hydrometeorology | 2015

A Preliminary Study toward Consistent Soil Moisture from AMSR2

Robert M. Parinussa; T. R. H. Holmes; Niko Wanders; Wouter Dorigo; R.A.M. de Jeu

AbstractA preliminary study toward consistent soil moisture products from the Advanced Microwave Scanning Radiometer 2 (AMSR2) is presented. Its predecessor, the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), has provided Earth scientists with a consistent and continuous global soil moisture dataset. A major challenge remains to achieve synergy between these soil moisture datasets, which is hampered by the lack of an overlapping observation period of the sensors. Here, observations of the multifrequency microwave radiometer on board the Tropical Rainfall Measuring Mission (TRMM) satellite were used to improve consistency between AMSR-E and AMSR2. Several scenarios to achieve synergy between the AMSR-E and AMSR2 soil moisture products were evaluated. The novel soil moisture retrievals from C-band observations, a frequency band that is lacking on board the TRMM satellite, are also presented. A global comparison of soil moisture retrievals against ERA-Interim soil moisture demons...


Remote Sensing | 2009

Enhanced Automated Canopy Characterization from Hyperspectral Data by a Novel Two Step Radiative Transfer Model Inversion Approach

Wouter Dorigo; Rudolf Richter; Frédéric Baret; Richard Bamler; W. Wagner

Automated, image based methods for the retrieval of vegetation biophysical and biochemical variables are often hampered by the lack of a priori knowledge about land cover and phenology, which makes the retrieval a highly underdetermined problem. This study addresses this problem by presenting a novel approach, called CRASh, for the concurrent retrieval of leaf area index, leaf chlorophyll content, leaf water content and leaf dry matter content from high resolution solar reflective earth observation data. CRASh, which is based on the inversion of the combined PROSPECT+SAILh radiative transfer model (RTM), explores the benefits of combining semi-empirical and physically based approaches. The approach exploits novel ways to address the underdetermined problem in the context of an automated retrieval from mono-temporal high resolution data. To regularize the inverse problem in the variable domain, RTM inversion is coupled with an automated land cover classification. Model inversion is based on a two step lookup table (LUT) approach: First, a range of possible solutions is selected from a previously calculated LUT based on the analogy between measured and simulated reflectance. The final solution is determined from this subset by minimizing the difference between the variables used to simulate the spectra contained in the reduced LUT and a first guess of the solution. This first guess of the variables is derived from predictive semi-empirical relationships between classical vegetation indices and the single variables. Additional spectral regularization is obtained by the use of hyperspectral data. Results show that estimates obtained with CRASh are significantly more accurate than those obtained with a tested conventional RTM inversion and semi-empirical approach. Accuracies obtained in this study are comparable to the results obtained by various authors for better constrained inversions that assume more a priori information. The completely automated and image-based nature of the approach facilitates its use in operational chains for upcoming high resolution airborne and spaceborne imaging spectrometers.


International Journal of Remote Sensing | 2009

Operational wide-area stem volume estimation based on airborne laser scanning and national forest inventory data

Markus Hollaus; Wouter Dorigo; W. Wagner; Klemens Schadauer; Bernhard Höfle; B. Maier

This paper evaluates the performance of a recently developed approach for wide-area stem volume estimations based on airborne laser scanning (ALS) and national forest inventory (NFI) data in the case where data recorded under operational conditions are used as input. This entails that neither ALS data nor NFI samples were collected and optimized for the current study. The approach was tested for the Austrian state of Vorarlberg, which covers an area of 2601 km2 and encloses about 970 km2 of forest land. ALS data with point densities varying between 1 and 4 points m−2 were acquired in the framework of a commercial state-wide terrain mapping project during several winter- and summer-flight campaigns. The stem volume model was calibrated with all NFI data available for Vorarlberg, whereas additional local forest inventory data were used for independent validation. Moreover, several relevant operational issues were addressed in this study, such as the determination of the optimum area used to calculate the reference laser metrics input to the model, the effect of gridding point cloud data to speed up processing, and the stratification of input data into coniferous and deciduous sample plots. Without tree species stratification and based on the 3D laser heights model, calibration provided a maximum R2 of 0.79 and a standard deviation (SD) of residuals derived from cross-validation of 107.4 m3 ha−1 (31.5%). Calibrating the model only with coniferous samples increased the achieved R2 to 0.81 and decreased SD to 104.8 m3 ha−1 (29.7%). As only eight NFI sample plots were available for deciduous forest a robust calibration of a separate model could not be obtained. Calibrating the model with a rasterized canopy height model (CHM) instead of using the 3D laser heights just led to a slight decrease in accuracy (R2 = 0.75, SD = 120.9 m3 ha−1 (35.5%) without forest-type stratification and R2 = 0.78 and SD = 117.2 m3 ha−1 (33.1%) for the coniferous stem volume model). Finally, the stem volume model calibrated with CHM data was adopted to generate a stem volume map of the entire State of Vorarlberg. Validation of this map with the additional local forest inventory data confirmed the accuracies (R2 = 0.75; SD = 135.6 m3 ha−1 (32.3%)) that were derived during calibration of the stem volume model based on the NFI data. The models and methods presented in this study are used operationally for forest and environment policy purposes and practical applications in Austria.


IEEE Geoscience and Remote Sensing Letters | 2006

Influence of the Adjacency Effect on Ground Reflectance Measurements

Rudolf Richter; Martin Bachmann; Wouter Dorigo; Andreas Müller

It is well known that the adjacency effect has to be taken into account during the retrieval of surface reflectance from high spatial resolution satellite imagery. The effect results from atmospheric scattering, depends on the reflectance contrast between a target pixel and its large-scale neighborhood, and decreases with wavelength. Recently, ground reflectance field measurements were published, claiming a substantial influence of the adjacency effect at short distance measurements (< 2 m), and an increase of the effect with wavelength. The authors repeated similar field measurements and found that the adjacency effect usually has a negligible influence at short distances, decreasing with wavelength in agreement with theory, but can have a small influence in high-reflectance contrast environments. Radiative transfer calculations were performed to quantify the influence at short and long distances for cases of practical interest (vegetation and soil in a low-reflectance background). For situations with large reflectance contrasts, the atmospheric backscatter component of the adjacency effect can influence ground measurements over small-area targets, and should therefore be taken into account. However, it is not possible to draw a general conclusion, since some of the considered surfaces are known for exhibiting strong directional effects

Collaboration


Dive into the Wouter Dorigo's collaboration.

Top Co-Authors

Avatar

W. Wagner

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Robert M. Parinussa

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Gruber

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luca Brocca

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Sebastian Hahn

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge