Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wouter Hoogkamer is active.

Publication


Featured researches published by Wouter Hoogkamer.


Gait & Posture | 2014

Response inhibition during avoidance of virtual obstacles while walking

Zrinka Potocanac; Wouter Hoogkamer; Felipe Pivetta Carpes; Mirjam Pijnappels; Sabine Verschueren; Jacques Duysens

While walking, one often has to suppress and adjust a planned step in order to avoid a fall. Given that steps are preprogrammed this requires some form of motor inhibition. Motor inhibition is commonly tested in hand function and only recently attempts have been made to evaluate inhibition in the lower limbs, during step initiation. As adequate motor inhibition might play a role in avoiding falls a test to assess response inhibition during walking would be valuable. We developed a task in which subjects walked on a treadmill by stepping on projected patches of light, which could suddenly change color forcing the subjects to avoid it by shortening or lengthening their steps. The difficulty level was manipulated in 4 conditions by changing the distance available to respond. We hypothesized that larger demands on motor inhibition during walking would produce more failures and tested the performance of young adults (n=12) in order to establish the protocol for use in older adults. The failure rate on the walking test was analyzed. Reducing the available response distance by 150 mm from the easiest condition resulted in a significant increase in failure rates from 15.6% to 65.1%. Therefore, results indicate this novel test can be used to assess the level of motor inhibition during walking. Additionally, in comparison to previous literature on obstacle avoidance, our experiment shows that changing a precise aiming movement is considerably more challenging than changing the same movement executed automatically.


Exercise and Sport Sciences Reviews | 2014

Steps forward in understanding backward gait: from basic circuits to rehabilitation

Wouter Hoogkamer; Pieter Meyns; Jacques Duysens

Backward locomotion is used increasingly in sports and rehabilitation. However, it is unclear whether training effects of backward walking (BW)/backward running (BR) can be transferred simply to forward walking (FW)/forward running (FR). This touches on the question whether the same neural substrate can generate FW and BW. The available evidence suggests that BW uses the same rhythm circuitry but additionally requires specialized control circuits.


Medicine and Science in Sports and Exercise | 2016

Altered Running Economy Directly Translates to Altered Distance-Running Performance.

Wouter Hoogkamer; Shalaya Kipp; Barry A. Spiering; Rodger Kram

PURPOSE Our goal was to quantify if small (1%-3%) changes in running economy quantitatively affect distance-running performance. Based on the linear relationship between metabolic rate and running velocity and on earlier observations that added shoe mass increases metabolic rate by ~1% per 100 g per shoe, we hypothesized that adding 100 and 300 g per shoe would slow 3000-m time-trial performance by 1% and 3%, respectively. METHODS Eighteen male sub-20-min 5-km runners completed treadmill testing, and three 3000-m time trials wearing control shoes and identical shoes with 100 and 300 g of discreetly added mass. We measured rates of oxygen consumption and carbon dioxide production and calculated metabolic rates for the treadmill tests, and we recorded overall running time for the time trials. RESULTS Adding mass to the shoes significantly increased metabolic rate at 3.5 m·s by 1.11% per 100 g per shoe (95% confidence interval = 0.88%-1.35%). While wearing the control shoes, participants ran the 3000-m time trial in 626.1 ± 55.6 s. Times averaged 0.65% ± 1.36% and 2.37% ± 2.09% slower for the +100-g and +300-g shoes, respectively (P < 0.001). On the basis of a linear fit of all the data, 3000-m time increased 0.78% per added 100 g per shoe (95% confidence interval = 0.52%-1.04%). CONCLUSION Adding shoe mass predictably degrades running economy and slows 3000-m time-trial performance proportionally. Our data demonstrate that laboratory-based running economy measurements can accurately predict changes in distance-running race performance due to shoe modifications.


Gait & Posture | 2015

Toward new sensitive measures to evaluate gait stability in focal cerebellar lesion patients

Wouter Hoogkamer; Sjoerd M. Bruijn; Stefan Sunaert; Stephan P. Swinnen; Frank Van Calenbergh; Jacques Duysens

The evident ataxic characteristics of gait in patients with cerebellar damage suggest that the cerebellum plays an important role in the neural control of gait. Ataxic features, such as increased gait variability and increased step width, are often related to gait stability. However, the link between these measures and gait stability is not straightforward. Therefore, to gain more insights into relations between gait stability, gait variability and gait ataxia, we quantified gait stability using the short-term maximum Lyapunov exponent. This is a more valid measure of gait stability, derived from dynamical systems theory. Eighteen patients with focal cerebellar lesions after tumor resection walked on an instrumented treadmill at 1.0m/s for 3min. The patients displayed relatively mild functional deficits (ICARS=6.9±6.4, range 0-20) and had a lower overground walking speed as compared to healthy controls (1.12m/s versus 1.31m/s). During treadmill walking, the short-term maximum Lyapunov exponent was higher in cerebellar patients, indicating reduced gait stability. Furthermore, step width was increased in the patient group while other spatio-temporal gait parameters were similar. Patients with the largest lesions in the vermis displayed the least stable gait pattern. These observations imply that the short-term maximum Lyapunov exponent is a sensitive measure of gait deficits in mildly ataxic cerebellar patients.


Journal of Neurophysiology | 2012

Selective bilateral activation of leg muscles after cutaneous nerve stimulation during backward walking

Wouter Hoogkamer; Firas Massaad; Karen Jansen; Sjoerd M. Bruijn; Jacques Duysens

During human locomotion, cutaneous reflexes have been suggested to function to preserve balance. Specifically, cutaneous reflexes in the contralateral legs muscles (with respect to the stimulus) were suggested to play an important role in maintaining stability during locomotor tasks where stability is threatened. We used backward walking (BW) as a paradigm to induce unstable gait and analyzed the cutaneous reflex activity in both ipsilateral and contralateral lower limb muscles after stimulation of the sural nerve at different phases of the gait cycle. In BW, the tibialis anterior (TA) reflex activity in the contralateral leg was markedly higher than TA background EMG activity during its stance phase. In addition, in BW a substantial reflex suppression was observed in the ipsilateral biceps femoris during the stance-swing transition in some participants, while for medial gastrocnemius the reflex activity was equal to background activity in both legs. To test whether the pronounced crossed responses in TA could be related to instability, the responses were correlated with measures of stability (short-term maximum Lyapunov exponents and step width). These measures were higher for BW compared with forward walking, indicating that BW is less stable. However, there was no significant correlation between these measures and the amplitude of the crossed TA responses in BW. It is therefore proposed that these crossed responses are related to an attempt to briefly slow down (TA decelerates the center of mass in the single-stance period) in the light of unexpected perturbations, such as provided by the sural nerve stimulation.


Journal of Neurophysiology | 2015

Adaptation and aftereffects of split-belt walking in cerebellar lesion patients

Wouter Hoogkamer; Sjoerd M. Bruijn; Stefan Sunaert; Stephan P. Swinnen; Frank Van Calenbergh; Jacques Duysens

To walk efficiently and stably on different surfaces under various constrained conditions, humans need to adapt their gait pattern substantially. Although the mechanisms behind locomotor adaptation are still not fully understood, the cerebellum is thought to play an important role. In this study we aimed to address the specific localization of cerebellar involvement in split-belt adaptation by comparing performance in patients with stable focal lesions after cerebellar tumor resection and in healthy controls. We observed that changes in symmetry of those parameters that were most closely related to interlimb coordination (such as step length and relative double stance time) were similar between healthy controls and cerebellar patients during and after split-belt walking. In contrast, relative stance times (proportions of stance in the gait cycle) were more asymmetric for the patient group than for the control group during the early phase of the post-split-belt condition. Patients who walked with more asymmetric relative stance times were more likely to demonstrate lesions in vermal lobules VI and Crus II. These results confirm that deficits in gait adaptation vary with ataxia severity and between patients with different types of cerebellar damage.


Journal of Neurophysiology | 2015

Gait asymmetry during early split-belt walking is related to perception of belt speed difference

Wouter Hoogkamer; Sjoerd M. Bruijn; Zrinka Potocanac; Frank Van Calenbergh; Stephan P. Swinnen; Jacques Duysens

Gait adaptation is essential for humans to walk according to the different demands of the environment. Although locomotor adaptation has been studied in different contexts and in various patient populations, the mechanisms behind locomotor adaptation are still not fully understood. The aim of the present study was to test two opposing hypotheses about the control of split-belt walking, one based on avoidance of limping and the other on avoiding limb excursion asymmetry. We assessed how well cerebellar patients with focal lesions and healthy control participants could sense differences between belt speeds during split-belt treadmill walking and correlated this to split-belt adaptation parameters. The ability to perceive differences between belt speeds was similar between the cerebellar patients and the healthy controls. After combining all participants, we observed a significant inverse correlation between stance time symmetry and limb excursion symmetry during the early phase of split-belt walking. Participants who were better able to perceive belt speed differences (e.g., they had a lower threshold and hence were able to detect a smaller speed difference) walked with the smallest asymmetry in stance time and the largest asymmetry in limb excursion. Our data support the hypothesis that humans aim to minimize (temporal) limping rather than (spatial) limb excursion asymmetry when using their perception of belt speed differences in the early phase of adaptation to split-belt walking.


Experimental Brain Research | 2015

Quick foot placement adjustments during gait: direction matters

Wouter Hoogkamer; Zrinka Potocanac; Jacques Duysens

To prevent falls, adjustment of foot placement is a frequently used strategy to regulate and restore gait stability. While foot trajectory adjustments have been studied during discrete stepping, online corrections during walking are more common in daily life. Here, we studied quick foot placement adjustments during gait, using an instrumented treadmill equipped with a projector, which allowed us to project virtual stepping stones. This allowed us to shift some of the approaching stepping stones in a chosen direction at a given moment, such that participants were forced to adapt their step in that specific direction and had varying time available to do so. Thirteen healthy participants performed six experimental trials all consisting of 580 stepping stones, and 96 of those stones were shifted anterior, posterior or lateral at one out of four distances from the participant. Overall, long-step gait adjustments were performed more successfully than short-step and side-step gait adjustments. We showed that the ability to execute movement adjustments depends on the direction of the trajectory adjustment. Our findings suggest that choosing different leg movement adjustments for obstacle avoidance comes with different risks and that strategy choice does not depend exclusively on environmental constraints. The used obstacle avoidance strategy choice might be a trade-off between the environmental factors (i.e., the cost of a specific adjustment) and individuals’ ability to execute a specific adjustment with success (i.e., the associated execution risk).


Perceptual and Motor Skills | 2014

Gait parameters affecting the perception threshold of locomotor symmetry: comment on Lauzière, et al. (2014)

Wouter Hoogkamer; Sjoerd M. Bruijn; Jacques Duysens

In a recent work on locomotor symmetry while walking on a split-belt treadmill, Lauzière and co-workers determined the perception threshold of gait symmetry in a sample of healthy elderly. In addition, they aimed to determine which particular gait parameters affect the symmetry of the perception threshold. Although only temporal and kinetic gait parameters were measured (and no kinematics), it was suggested that stance time symmetry is an important criterion that participants use to identify the threshold. Here it is argued that several other gait parameters could qualify equally well as main criteria used to identify the threshold and that these parameters should be taken into account in future studies.


PeerJ | 2014

Applying the cost of generating force hypothesis to uphill running

Wouter Hoogkamer; Paolo Taboga; Rodger Kram

Historically, several different approaches have been applied to explain the metabolic cost of uphill human running. Most of these approaches result in unrealistically high values for the efficiency of performing vertical work during running uphill, or are only valid for running up steep inclines. The purpose of this study was to reexamine the metabolic cost of uphill running, based upon our understanding of level running energetics and ground reaction forces during uphill running. In contrast to the vertical efficiency approach, we propose that during incline running at a certain velocity, the forces (and hence metabolic energy) required for braking and propelling the body mass parallel to the running surface are less than during level running. Based on this idea, we propose that the metabolic rate during uphill running can be predicted by a model, which posits that (1) the metabolic cost of perpendicular bouncing remains the same as during level running, (2) the metabolic cost of running parallel to the running surface decreases with incline, (3) the delta efficiency of producing mechanical power to lift the COM vertically is constant, independent of incline and running velocity, and (4) the costs of leg and arm swing do not change with incline. To test this approach, we collected ground reaction force (GRF) data for eight runners who ran thirty 30-second trials (velocity: 2.0–3.0 m/s; incline: 0–9°). We also measured the metabolic rates of eight different runners for 17, 7-minute trials (velocity: 2.0–3.0 m/s; incline: 0–8°). During uphill running, parallel braking GRF approached zero for the 9° incline trials. Thus, we modeled the metabolic cost of parallel running as exponentially decreasing with incline. With that assumption, best-fit parameters for the metabolic rate data indicate that the efficiency of producing mechanical power to lift the center of mass vertically was independent of incline and running velocity, with a value of ∼29%. The metabolic cost of uphill running is not simply equal to the sum of the cost of level running and the cost of performing work to lift the body mass against gravity. Rather, it reflects a constant cost of perpendicular bouncing, decreased costs of parallel braking and propulsion and of course the cost of lifting body mass against gravity.

Collaboration


Dive into the Wouter Hoogkamer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacques Duysens

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Jaak Duysens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Zrinka Potocanac

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Rodger Kram

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Frank Van Calenbergh

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Sabine Verschueren

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Stephan P. Swinnen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Firas Massaad

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jesse H. Frank

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge