Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wouter J. J. Huijgen is active.

Publication


Featured researches published by Wouter J. J. Huijgen.


Energy and Environmental Science | 2015

Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps

S. Van den Bosch; Wouter Schutyser; Ruben Vanholme; T. Driessen; S.-F. Koelewijn; Tom Renders; B. De Meester; Wouter J. J. Huijgen; Wim Dehaen; Christophe M. Courtin; Bert Lagrain; Wout Boerjan; Bert F. Sels

A catalytic lignocellulose biorefinery process is presented, valorizing both polysaccharide and lignin components into a handful of chemicals. To that end, birch sawdust is efficiently delignified through simultaneous solvolysis and catalytic hydrogenolysis in the presence of a Ru on carbon catalyst (Ru/C) in methanol under a H2 atmosphere at elevated temperature, resulting in a carbohydrate pulp and a lignin oil. The lignin oil yields above 50% of phenolic monomers (mainly 4-n-propylguaiacol and 4-n-propylsyringol) and about 20% of a set of phenolic dimers, relative to the original lignin content, next to phenolic oligomers. The structural features of the lignin monomers, dimers and oligomers were identified by a combination of GC/MS, GPC and 2D HSQC NMR techniques, showing interesting functionalities for forthcoming polymer applications. The effect of several key parameters like temperature, reaction time, wood particle size, reactor loading, catalyst reusability and the influence of solvent and gas were examined in view of the phenolic product yield, the degree of delignification and the sugar retention as a first assessment of the techno-economic feasibility of this biorefinery process. The separated carbohydrate pulp contains up to 92% of the initial polysaccharides, with a nearly quantitative retention of cellulose. Pulp valorization was demonstrated by its chemocatalytic conversion to sugar polyols, showing the multiple use of Ru/C, initially applied in the hydrogenolysis process. Various lignocellulosic substrates, including genetically modified lines of Arabidopsis thaliana, were finally processed in the hydrogenolytic biorefinery, indicating lignocellulose rich in syringyl-type lignin, as found in hardwoods, as the ideal feedstock for the production of chemicals.


Green Chemistry | 2016

New insights into the structure and composition of technical lignins: a comparative characterisation study

Sandra Constant; Hans Wienk; Augustinus Emmanuel Frissen; Peter de Peinder; Rolf Boelens; Daan S. van Es; Bert M. Weckhuysen; Wouter J. J. Huijgen; Richard J.A. Gosselink; Pieter C. A. Bruijnincx

Detailed insight into the structure and composition of industrial (technical) lignins is needed to devise efficient thermal, bio- or chemocatalytic valorisation strategies. Six such technical lignins covering three main industrial pulping methods (Indulin AT Kraft, Protobind 1000 soda lignin and Alcell, poplar, spruce and wheat straw organosolv lignins) were comprehensively characterised by lignin composition analysis, FT-IR, pyrolysis-GC-MS, quantitative 31P and 2D HSQC NMR analysis and molar mass distribution by Size Exclusion Chromatography (SEC). A comparison of nine SEC methods, including the first analysis of lignins with commercial alkaline SEC columns, showed molar masses to vary considerably, allowing some recommendations to be made. The lignin molar mass decreased in the order: Indulin Kraft > soda P1000 > Alcell > OS-W ∼ OS-P ∼ OS-S, regardless of the SEC method chosen. Structural identification and quantification of aromatic units and inter-unit linkages indicated that all technical lignins, including the organosolv ones, have considerably been degraded and condensed by the pulping process. Importantly, low amounts of β- ether linkages were found compared to literature values for protolignin and lignins obtained by other, milder isolation processes. Stilbenes and ether furfural units could also be identified in some of the lignins. Taken together, the insights gained in the structure of the technical lignins, in particular, the low β-O-4 contents, carry implications for the design of lignin valorisation strategies including (catalytic) depolymerisation and material applications.


Bioresource Technology | 2013

Ethanol-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose

Jelle Wildschut; Arjan T. Smit; Johannes H. Reith; Wouter J. J. Huijgen

Wheat straw fractionation by ethanol organosolv was studied as pretreatment for enzymatic cellulose hydrolysis. A parametric study focusing on temperature, reaction time, acid catalyst dose, solvent concentration, and particle size was performed to determine their influence on delignification, xylan hydrolysis, and enzymatic cellulose digestibility. Major process parameters were found to be temperature, ethanol concentration, and acid dose. Optimisation of the process towards enzymatic digestibility resulted in a maximum glucose yield of 86% without the use of a catalyst (lignin yield 84%, organosolv at 210 °C, 50% w/w aqueous EtOH). Using 30 mM H2SO4 as catalyst resulted in similar glucose and lignin yields at a lower temperature (190 °C, 60% w/w aqueous EtOH). Lowering the pretreatment temperature by using an acid catalyst substantially improved the yield of the hemicellulose derivatives xylose and furfural. A systematic approach in pretreatment optimisation is vital for development of efficient lignocellulosic biorefineries.


Chemsuschem | 2013

Conversion of (Ligno)Cellulose Feeds to Isosorbide with Heteropoly Acids and Ru on Carbon

Beau Op de Beeck; Jan Geboers; Stijn Van de Vyver; Jonas Van Lishout; Jeroen Snelders; Wouter J. J. Huijgen; Christophe M. Courtin; Pierre A. Jacobs; Bert F. Sels

The catalytic valorization of cellulose is currently subject of intense research. Isosorbide is among the most interesting products that can be formed from cellulose as it is a potential platform molecule and can be used for the synthesis of a wide range of pharmaceuticals, chemicals, and polymers. A promising direct route from cellulose to isosorbide is presented in this work. The strategy relies on a one-pot bifunctional catalytic concept, combining heteropoly acids, viz. H(4)SiW(12)O(40), and redox catalysts, viz. commercial Ru on carbon, under H(2) pressure. Starting from pure microcrystalline cellulose, a rapid conversion was observed, resulting in over 50% isosorbide yield. The robustness of the developed system is evidenced by the conversion of a range of impure cellulose pulps obtained by organosolv fractionation, with isosorbide yields up to 63%. Results were compared with other (ligno)cellulose feedstocks, highlighting the importance of fractionation and purification to increase reactivity and convertibility of the cellulose feedstock.


Trends in Biotechnology | 2014

Opportunities and challenges for seaweed in the biobased economy

Jaap W. van Hal; Wouter J. J. Huijgen; Ana M. López-Contreras

The unique chemical composition of seaweeds and their fast growth rates offer many opportunities for biorefining. In this article we argue that cascading biorefinery valorization concepts are viable alternatives to only using seaweeds as carbohydrate sources for the fermentative production of biofuels. However, many challenges remain with respect to use of seaweeds for chemical production, such as the large seasonal variation in the chemical composition of seaweeds.


Waste Management | 2011

Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure.

André van Zomeren; Sieger van der Laan; Hans B.A. Kobesen; Wouter J. J. Huijgen; Rob N.J. Comans

Steel slag can be applied as substitute for natural aggregates in construction applications. The material imposes a high pH (typically 12.5) and low redox potential (Eh), which may lead to environmental problems in specific application scenarios. The aim of this study is to investigate the potential of accelerated steel slag carbonation, at relatively low pCO2 pressure (0.2 bar), to improve the environmental pH and the leaching properties of steel slag, with specific focus on the leaching of vanadium. Carbonation experiments are performed in laboratory columns with steel slag under water-saturated and -unsaturated conditions and temperatures between 5 and 90 °C. Two types of steel slag are tested; free lime containing (K3) slag and K1 slag with a very low free lime content. The fresh and carbonated slag samples are investigated using a combination of leaching experiments, geochemical modelling of leaching mechanisms and microscopic/mineralogical analysis, in order to identify the major processes that control the slag pH and resulting V leaching. The major changes in the amount of sequestered CO2 and the resulting pH reduction occurred within 24h, the free lime containing slag (K3-slag) being more prone to carbonation than the slag with lower free lime content (K1-slag). While carbonation at these conditions was found to occur predominantly at the surface of the slag grains, the formation of cracks was observed in carbonated K3 slag, suggesting that free lime in the interior of slag grains had also reacted. The pH of the K3 slag (originally pH±12.5) was reduced by about 1.5 units, while the K1 slag showed a smaller decrease in pH from about 11.7 to 11.1. However, the pH reduction after carbonation of the K3 slag was observed to lead to an increased V-leaching. Vanadium leaching from the K1 slag resulted in levels above the limit values of the Dutch Soil Quality Decree, for both the untreated and carbonated slag. V-leaching from the carbonated K3 slag remained below these limit values at the relatively high pH that remained after carbonation. The V-bearing di-Ca silicate (C2S) phase has been identified as the major source of the V-leaching. It is shown that the dissolution of this mineral is limited in fresh steel slag, but strongly enhanced by carbonation, which causes the observed enhanced release of V from the K3 slag. The obtained insights in the mineral transformation reactions and their effect on pH and V-leaching provide guidance for further improvement of an accelerated carbonation technology.


Bioresource Technology | 2014

Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process

Jeroen Snelders; Emmie Dornez; Bouchra Benjelloun-Mlayah; Wouter J. J. Huijgen; Paul J. de Wild; Richard J.A. Gosselink; Jort Steven Johan Gerritsma; Christophe M. Courtin

To assess the potential of acetic and formic acid organosolv fractionation of wheat straw as basis of an integral biorefinery concept, detailed knowledge on yield, composition and purity of the obtained streams is needed. Therefore, the process was performed, all fractions extensively characterized and the mass balance studied. Cellulose pulp yield was 48% of straw dry matter, while it was 21% and 27% for the lignin and hemicellulose-rich fractions. Composition analysis showed that 67% of wheat straw xylan and 96% of lignin were solubilized during the process, resulting in cellulose pulp of 63% purity, containing 93% of wheat straw cellulose. The isolated lignin fraction contained 84% of initial lignin and had a purity of 78%. A good part of wheat straw xylan (58%) ended up in the hemicellulose-rich fraction, half of it as monomeric xylose, together with proteins (44%), minerals (69%) and noticeable amounts of acids used during processing.


Holzforschung | 2011

Organosolv pretreatment of olive tree biomass for fermentable sugars.

Manuel J. Díaz; Wouter J. J. Huijgen; Ron R. van der Laan; Johannes H. Reith; Cristóbal Cara; Eulogio Castro

Abstract Olive tree pruning biomass is one of the main agricultural residues available in Mediterranean countries and is currently lacking commercial applications. To take advantage of its sugar content, a pretreatment is necessary to enhance enzyme accessibility of the cellulose fraction of the residue. This paper describes for the first time the use of organosolv pretreatment in this regard. The main process variables such as pretreatment temperature, residence time, and solvent composition (aqueous ethanol) are studied. Results show that organosolv pretreatment causes delignification and hydrolysis of hemicelluloses and improves the enzymatic digestibility of olive tree pruning biomass. A higher pretreatment severity and ethanol content of the solvent were found to increase delignification (up to 64% at 66% w/w aqueous ethanol, 210°C, 60 min). By contrast, xylan hydrolysis was promoted by a lower ethanol content (maximum 92%). The highest enzymatic hydrolysis yield (90% of the structural glucan present in the raw material) has been obtained after pretreatment with 43% w/w aqueous ethanol at 210°C for 15 min. Organosolv pretreatment was found to be the most effective pretreatment for enzymatic hydrolysis of olive tree pruning biomass.


Chemsuschem | 2016

Hydrogen-free catalytic fractionation of woody biomass

Maxim V. Galkin; Arjan T. Smit; Elena Subbotina; Konstantin A. Artemenko; Jonas Bergquist; Wouter J. J. Huijgen; Joseph S. M. Samec

The pulping industry could become a biorefinery if the lignin and hemicellulose components of the lignocellulose are valorized. Conversion of lignin into well-defined aromatic chemicals is still a major challenge. Lignin depolymerization reactions often occur in parallel with irreversible condensation reactions of the formed fragments. Here, we describe a strategy that markedly suppresses the undesired condensation pathways and allows to selectively transform lignin into a few aromatic compounds. Notably, applying this strategy to woody biomass at organosolv pulping conditions, the hemicellulose, cellulose, and lignin were separated and in parallel the lignin was transformed into aromatic monomers. In addition, we were able to utilize a part of the lignocellulose as an internal source of hydrogen for the reductive lignin transformations. We hope that the presented methodology will inspire researchers in the field of lignin valorization as well as pulp producers to develop more efficient biomass fractionation processes in the future.


Green Chemistry | 2016

The importance of pretreatment and feedstock purity in the reductive splitting of (ligno)cellulose by metal supported USY zeolite

Thijs Ennaert; Beau Op de Beeck; Jens Vanneste; Arjan T. Smit; Wouter J. J. Huijgen; Annick Vanhulsel; Pierre A. Jacobs; Bert F. Sels

Reductive hydrolysis of cellulose to hexitols is a promising technology to valorize cellulose streams. Several catalytic systems have been reported to successfully process commercially available purified cellulose powders according to this technology. Ruthenium-loaded USY zeolites in the presence of minute amounts of HCl previously showed very high hexitol yields. This contribution first investigates into more detail the impact of several cellulose accessibility-related properties like cellulose crystallinity, particle size and degree of polymerization on the conversion rate and hexitol selectivity. Therefore, a series of commercial cellulose samples and several mechano- and chemotreated ones were processed with the Ru/H-USY–HCl catalytic system under standard hot liquid water conditions. The results reveal that the polymerization degree has a large impact on both the conversion rate and selectivity, but its impact fades for DPs lower than 200. From then on, the dominant parameters are the particle size and crystallinity. A second part addresses the influence of cellulose purity. Therefore, organosolv pulps of three lignocellulosic substrates (wheat straw, spruce and birch wood), optionally followed by a bleaching procedure, were processed under the same catalytic circumstances. Here factors like residual lignin content and acid buffer capacity appeared crucial, pointing to the necessity of a dedicated delignification and purification procedure step in order to form the most reactive cellulose feedstock for hexitol production. Complete removal of non-glucosic components is not required since processing of ethanol organosolv birch cellulose and bleached ethanol organosolv wheat straw cellulose, both containing about 6 wt% of lignin and minor contents of ashes and proteins, showed a similar hexitol yield, viz. 34–39%, to that derived from pure microcrystalline cellulose.

Collaboration


Dive into the Wouter J. J. Huijgen's collaboration.

Top Co-Authors

Avatar

Arjan T. Smit

Energy Research Centre of the Netherlands

View shared research outputs
Top Co-Authors

Avatar

Beau Op de Beeck

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Bert F. Sels

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Christophe M. Courtin

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jeroen Snelders

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

P.J. de Wild

Energy Research Centre of the Netherlands

View shared research outputs
Top Co-Authors

Avatar

Richard J.A. Gosselink

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Jan Geboers

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jonas Van Lishout

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Pierre A. Jacobs

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge