Wouter Knapen
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wouter Knapen.
Molecular Cell | 2015
Natalie Verstraeten; Wouter Knapen; Cyrielle Kint; Veerle Liebens; Bram Van den Bergh; Liselot Dewachter; Joran Michiels; Qiang Fu; Charlotte C. David; Ana Carolina Fierro; Kathleen Marchal; Jan Beirlant; Wim Versées; Johan Hofkens; Maarten Jansen; Maarten Fauvart; Jan Michiels
Within bacterial populations, a small fraction of persister cells is transiently capable of surviving exposure to lethal doses of antibiotics. As a bet-hedging strategy, persistence levels are determined both by stochastic induction and by environmental stimuli called responsive diversification. Little is known about the mechanisms that link the low frequency of persisters to environmental signals. Our results support a central role for the conserved GTPase Obg in determining persistence in Escherichia coli in response to nutrient starvation. Obg-mediated persistence requires the stringent response alarmone (p)ppGpp and proceeds through transcriptional control of the hokB-sokB type I toxin-antitoxin module. In individual cells, increased Obg levels induce HokB expression, which in turn results in a collapse of the membrane potential, leading to dormancy. Obg also controls persistence in Pseudomonas aeruginosa and thus constitutes a conserved regulator of antibiotic tolerance. Combined, our findings signify an important step toward unraveling shared genetic mechanisms underlying persistence.
Methods of Molecular Biology | 2016
Natalie Verstraeten; Wouter Knapen; Maarten Fauvart; Jan Michiels
Bactericidal antibiotics quickly kill the majority of a bacterial population. However, a small fraction of cells typically survive through entering the so-called persister state. Persister cells are increasingly being viewed as a major cause of the recurrence of chronic infectious disease and could be an important factor in the emergence of antibiotic resistance. The phenomenon of persistence was first described in the 1940s, but remained poorly understood for decades afterwards. Only recently, a series of breakthrough discoveries has started to shed light on persister physiology and the molecular and genetic underpinnings of persister formation. We here provide an overview of the key studies that have paved the way for the current boom in persistence research, with a special focus on the technological and methodological advances that have enabled this progress.
Antimicrobial Agents and Chemotherapy | 2017
Veerle Liebens; Valerie Defraine; Wouter Knapen; Toon Swings; Serge Beullens; Romu Corbau; Arnaud Marchand; Patrick Chaltin; Maarten Fauvart; Jan Michiels
ABSTRACT Antibiotics typically fail to completely eradicate a bacterial population, leaving a small fraction of transiently antibiotic-tolerant persister cells intact. Persisters are therefore seen to be a major cause of treatment failure and greatly contribute to the recalcitrant nature of chronic infections. The current study focused on Pseudomonas aeruginosa, a Gram-negative pathogen belonging to the notorious ESKAPE group of pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) and, due to increasing resistance against most conventional antibiotics, posing a serious threat to human health. Greatly contributing to the difficult treatment of P. aeruginosa infections is the presence of persister cells, and elimination of these cells would therefore significantly improve patient outcomes. In this study, a small-molecule library was screened for compounds that, in combination with the fluoroquinolone antibiotic ofloxacin, reduced the number of P. aeruginosa persisters compared to the number achieved with treatment with the antibiotic alone. Based on the early structure-activity relationship, 1-((2,4-dichlorophenethyl)amino)-3-phenoxypropan-2-ol (SPI009) was selected for further characterization. Combination of SPI009 with mechanistically distinct classes of antibiotics reduced the number of persisters up to 106-fold in both lab strains and clinical isolates of P. aeruginosa. Further characterization of the compound revealed a direct and efficient killing of persister cells. SPI009 caused no erythrocyte damage and demonstrated minor cytotoxicity. In conclusion, we identified a novel antipersister compound active against P. aeruginosa with promising applications for the design of novel, case-specific combination therapies in the fight against chronic infections.
Microbial Cell | 2015
Natalie Verstraeten; Wouter Knapen; Maarten Fauvart; Jan Michiels
Bacterial populations are known to harbor a small fraction of so-called persister cells that have the remarkable ability to survive treatment with very high doses of antibiotics. Recent studies underscore the importance of persistence in chronic infections, yet the nature of persisters remains poorly understood. We recently showed that the universally conserved GTPase Obg modulates persistence via a (p)ppGpp-dependent mechanism that proceeds through expression of hokB. HokB is a membrane-bound toxin that causes the membrane potential to collapse. The resulting drop in cellular energy levels triggers a switch to the persistent state, yielding protection from antibiotic attack. Obg-mediated persistence is conserved in the human pathogen Pseudomonas aeruginosa, making Obg a promising target for therapies directed against bacterial persistence.
Mbio | 2018
Dorien Wilmaerts; Mariam Bayoumi; Liselot Dewachter; Wouter Knapen; Jacek T. Mika; Johan Hofkens; Peter Dedecker; Giovanni Maglia; Natalie Verstraeten; Jan Michiels
ABSTRACT Bacterial populations harbor a small fraction of cells that display transient multidrug tolerance. These so-called persister cells are extremely difficult to eradicate and contribute to the recalcitrance of chronic infections. Several signaling pathways leading to persistence have been identified. However, it is poorly understood how the effectors of these pathways function at the molecular level. In a previous study, we reported that the conserved GTPase Obg induces persistence in Escherichia coli via transcriptional upregulation of the toxin HokB. In the present study, we demonstrate that HokB inserts in the cytoplasmic membrane where it forms pores. The pore-forming capacity of the HokB peptide is demonstrated by in vitro conductance measurements on synthetic and natural lipid bilayers, revealing an asymmetrical conductance profile. Pore formation is directly linked to persistence and results in leakage of intracellular ATP. HokB-induced persistence is strongly impeded in the presence of a channel blocker, thereby providing a direct link between pore functioning and persistence. Furthermore, the activity of HokB pores is sensitive to the membrane potential. This sensitivity presumably results from the formation of either intermediate or mature pore types depending on the membrane potential. Taken together, these results provide a detailed view on the mechanistic basis of persister formation through the effector HokB. IMPORTANCE There is increasing awareness of the clinical importance of persistence. Indeed, persistence is linked to the recalcitrance of chronic infections, and evidence is accumulating that persister cells constitute a pool of viable cells from which resistant mutants can emerge. Unfortunately, persistence is a poorly understood process at the mechanistic level. In this study, we unraveled the pore-forming activity of HokB in E. coli and discovered that these pores lead to leakage of intracellular ATP, which is correlated with the induction of persistence. Moreover, we established a link between persistence and pore activity, as the number of HokB-induced persister cells was strongly reduced using a channel blocker. The latter opens opportunities to reduce the number of persister cells in a clinical setting. IMPORTANCE There is increasing awareness of the clinical importance of persistence. Indeed, persistence is linked to the recalcitrance of chronic infections, and evidence is accumulating that persister cells constitute a pool of viable cells from which resistant mutants can emerge. Unfortunately, persistence is a poorly understood process at the mechanistic level. In this study, we unraveled the pore-forming activity of HokB in E. coli and discovered that these pores lead to leakage of intracellular ATP, which is correlated with the induction of persistence. Moreover, we established a link between persistence and pore activity, as the number of HokB-induced persister cells was strongly reduced using a channel blocker. The latter opens opportunities to reduce the number of persister cells in a clinical setting.
Bioorganic & Medicinal Chemistry Letters | 2014
Veerle Liebens; Evelien Gerits; Wouter Knapen; Toon Swings; Serge Beullens; Hans Steenackers; Stijn Robijns; Anna Lippell; Alex J. O’Neill; Matija Veber; Mirjam Fröhlich; Annika Krona; Maria Lövenklev; Romu Corbau; Arnaud Marchand; Patrick Chaltin; Katrijn De Brucker; Karin Thevissen; Bruno P. A. Cammue; Maarten Fauvart; Natalie Verstraeten; Jan Michiels
Archive | 2016
Dorien Wilmaerts; Wouter Knapen; Mariam Bayoumi; Giovanni Maglia; Natalie Verstraeten; Jan Michiels
Archive | 2015
Natalie Verstraeten; Wouter Knapen; Maarten Fauvart; Jan Michiels
Archive | 2014
Wouter Knapen; Natalie Verstraeten; Maarten Fauvart; Jan Michiels
Archive | 2014
Wouter Knapen; Natalie Verstraeten; Maarten Fauvart; Jan Michiels