Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wouter Kohlen is active.

Publication


Featured researches published by Wouter Kohlen.


Nature | 2012

A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching.

Tobias Kretzschmar; Wouter Kohlen; Joelle Sasse; Lorenzo Borghi; Markus Schlegel; Julien B. Bachelier; Didier Reinhardt; Ralph Bours; Harro J. Bouwmeester; Enrico Martinoia

Strigolactones were originally identified as stimulators of the germination of root-parasitic weeds that pose a serious threat to resource-limited agriculture. They are mostly exuded from roots and function as signalling compounds in the initiation of arbuscular mycorrhizae, which are plant–fungus symbionts with a global effect on carbon and phosphate cycling. Recently, strigolactones were established to be phytohormones that regulate plant shoot architecture by inhibiting the outgrowth of axillary buds. Despite their importance, it is not known how strigolactones are transported. ATP-binding cassette (ABC) transporters, however, are known to have functions in phytohormone translocation. Here we show that the Petunia hybrida ABC transporter PDR1 has a key role in regulating the development of arbuscular mycorrhizae and axillary branches, by functioning as a cellular strigolactone exporter. P. hybrida pdr1 mutants are defective in strigolactone exudation from their roots, resulting in reduced symbiotic interactions. Above ground, pdr1 mutants have an enhanced branching phenotype, which is indicative of impaired strigolactone allocation. Overexpression of Petunia axillaris PDR1 in Arabidopsis thaliana results in increased tolerance to high concentrations of a synthetic strigolactone, consistent with increased export of strigolactones from the roots. PDR1 is the first known component in strigolactone transport, providing new opportunities for investigating and manipulating strigolactone-dependent processes.


Plant Physiology | 2011

Physiological Effects of the Synthetic Strigolactone Analog GR24 on Root System Architecture in Arabidopsis: Another Belowground Role for Strigolactones?

Carolien Ruyter-Spira; Wouter Kohlen; Tatsiana Charnikhova; Arjan van Zeijl; Laura van Bezouwen; Norbert C.A. de Ruijter; Catarina Cardoso; Juan A. López-Ráez; Radoslava Matusova; Ralph Bours; Francel Verstappen; Harro J. Bouwmeester

In this study, the role of the recently identified class of phytohormones, strigolactones, in shaping root architecture was addressed. Primary root lengths of strigolactone-deficient and -insensitive Arabidopsis (Arabidopsis thaliana) plants were shorter than those of wild-type plants. This was accompanied by a reduction in meristem cell number, which could be rescued by application of the synthetic strigolactone analog GR24 in all genotypes except in the strigolactone-insensitive mutant. Upon GR24 treatment, cells in the transition zone showed a gradual increase in cell length, resulting in a vague transition point and an increase in transition zone size. PIN1/3/7-green fluorescent protein intensities in provascular tissue of the primary root tip were decreased, whereas PIN3-green fluorescent protein intensity in the columella was not affected. During phosphate-sufficient conditions, GR24 application to the roots suppressed lateral root primordial development and lateral root forming potential, leading to a reduction in lateral root density. Moreover, auxin levels in leaf tissue were reduced. When auxin levels were increased by exogenous application of naphthylacetic acid, GR24 application had a stimulatory effect on lateral root development instead. Similarly, under phosphate-limiting conditions, endogenous strigolactones present in wild-type plants stimulated a more rapid outgrowth of lateral root primordia when compared with strigolactone-deficient mutants. These results suggest that strigolactones are able to modulate local auxin levels and that the net result of strigolactone action is dependent on the auxin status of the plant. We postulate that the tightly balanced auxin-strigolactone interaction is the basis for the mechanism of the regulation of the plants’ root-to-shoot ratio.


New Phytologist | 2008

Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation.

Juan A. López-Ráez; Tatsiana Charnikhova; Victoria Gomez-Roldan; Radoslava Matusova; Wouter Kohlen; Ric C. H. de Vos; Francel Verstappen; Virginie Puech-Pagès; Guillaume Bécard; Patrick P.J. Mulder; Harro J. Bouwmeester

* Strigolactones are rhizosphere signalling compounds that mediate host location in arbuscular mycorrhizal (AM) fungi and parasitic plants. Here, the regulation of the biosynthesis of strigolactones is studied in tomato (Solanum lycopersicum). * Strigolactone production under phosphate starvation, in the presence of the carotenoid biosynthesis inhibitor fluridone and in the abscisic acid (ABA) mutant notabilis were assessed using a germination bioassay with seeds of Orobanche ramosa; a hyphal branching assay with Gigaspora spp; and by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis. * The root exudates of tomato cv. MoneyMaker induced O. ramosa seed germination and hyphal branching in AM fungi. Phosphate starvation markedly increased, and fluridone strongly decreased, this activity. Exudates of notabilis induced approx. 40% less germination than the wild-type. The LC-MS/MS analysis confirmed that the biological activity and changes therein were due to the presence of several strigolactones; orobanchol, solanacol and two or three didehydro-orobanchol isomers. * These results show that the AM branching factors and parasitic plant germination stimulants in tomato root exudate are strigolactones and that they are biosynthetically derived from carotenoids. The dual activity of these signalling compounds in attracting beneficial AM fungi and detrimental parasitic plants is further strengthened by environmental conditions such as phosphate availability.


Plant Physiology | 2011

Strigolactones Are Transported through the Xylem and Play a Key Role in Shoot Architectural Response to Phosphate Deficiency in Nonarbuscular Mycorrhizal Host Arabidopsis

Wouter Kohlen; Tatsiana Charnikhova; Qing Liu; Ralph Bours; Malgorzata A. Domagalska; Sebastien Beguerie; Francel Verstappen; Ottoline Leyser; Harro J. Bouwmeester; Carolien Ruyter-Spira

The biosynthesis of the recently identified novel class of plant hormones, strigolactones, is up-regulated upon phosphate deficiency in many plant species. It is generally accepted that the evolutionary origin of strigolactone up-regulation is their function as a rhizosphere signal that stimulates hyphal branching of arbuscular mycorrhizal fungi. In this work, we demonstrate that this induction is conserved in Arabidopsis (Arabidopsis thaliana), although Arabidopsis is not a host for arbuscular mycorrhizal fungi. We demonstrate that the increase in strigolactone production contributes to the changes in shoot architecture observed in response to phosphate deficiency. Using high-performance liquid chromatography, column chromatography, and multiple reaction monitoring-liquid chromatography-tandem mass spectrometry analysis, we identified two strigolactones (orobanchol and orobanchyl acetate) in Arabidopsis and have evidence of the presence of a third (5-deoxystrigol). We show that at least one of them (orobanchol) is strongly reduced in the putative strigolactone biosynthetic mutants more axillary growth1 (max1) and max4 but not in the signal transduction mutant max2. Orobanchol was also detected in xylem sap and up-regulated under phosphate deficiency, which is consistent with the idea that root-derived strigolactones are transported to the shoot, where they regulate branching. Moreover, two additional putative strigolactone-like compounds were detected in xylem sap, one of which was not detected in root exudates. Together, these results show that xylem-transported strigolactones contribute to the regulation of shoot architectural response to phosphate-limiting conditions.


The Plant Cell | 2011

Strigolactone Biosynthesis in Medicago truncatula and Rice Requires the Symbiotic GRAS-Type Transcription Factors NSP1 and NSP2

W. Liu; Wouter Kohlen; A. Lillo; Op den R. Camp; S. Ivanov; M. Hartog; Erik Limpens; M. Jamil; Cezary Smaczniak; Kerstin Kaufmann; Wei-Cai Yang; Guido Hooiveld; T. Charnikhova; Harro J. Bouwmeester; Ton Bisseling; René Geurts

This work examines the functions of the Medicago truncatula and rice GRAS-type transcription factors NSP1 and NSP2. They were found to be essential for strigolactone synthesis, possibly through direct regulation of DWARF27. Legume GRAS (GAI, RGA, SCR)-type transcription factors NODULATION SIGNALING PATHWAY1 (NSP1) and NSP2 are essential for rhizobium Nod factor-induced nodulation. Both proteins are considered to be Nod factor response factors regulating gene expression after symbiotic signaling. However, legume NSP1 and NSP2 can be functionally replaced by nonlegume orthologs, including rice (Oryza sativa) NSP1 and NSP2, indicating that both proteins are functionally conserved in higher plants. Here, we show that NSP1 and NSP2 are indispensable for strigolactone (SL) biosynthesis in the legume Medicago truncatula and in rice. Mutant nsp1 plants do not produce SLs, whereas in M. truncatula, NSP2 is essential for conversion of orobanchol into didehydro-orobanchol, which is the main SL produced by this species. The disturbed SL biosynthesis in nsp1 nsp2 mutant backgrounds correlates with reduced expression of DWARF27, a gene essential for SL biosynthesis. Rice and M. truncatula represent distinct phylogenetic lineages that split approximately 150 million years ago. Therefore, we conclude that regulation of SL biosynthesis by NSP1 and NSP2 is an ancestral function conserved in higher plants. NSP1 and NSP2 are single-copy genes in legumes, which implies that both proteins fulfill dual regulatory functions to control downstream targets after rhizobium-induced signaling as well as SL biosynthesis in nonsymbiotic conditions.


Plant Journal | 2009

SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato

Jonathan T. Vogel; Michael Walter; Patrick Giavalisco; Anna Lytovchenko; Wouter Kohlen; Tatsiana Charnikhova; Andrew J. Simkin; Charles Goulet; Dieter Strack; Harro J. Bouwmeester; Alisdair R. Fernie; Harry J. Klee

The regulation of shoot branching is an essential determinant of plant architecture, integrating multiple external and internal signals. One of the signaling pathways regulating branching involves the MAX (more axillary branches) genes. Two of the genes within this pathway, MAX3/CCD7 and MAX4/CCD8, encode carotenoid cleavage enzymes involved in generating a branch-inhibiting hormone, recently identified as strigolactone. Here, we report the cloning of SlCCD7 from tomato. As in other species, SlCCD7 encodes an enzyme capable of cleaving cyclic and acyclic carotenoids. However, the SlCCD7 protein has 30 additional amino acids of unknown function at its C terminus. Tomato plants expressing a SlCCD7 antisense construct display greatly increased branching. To reveal the underlying changes of this strong physiological phenotype, a metabolomic screen was conducted. With the exception of a reduction of stem amino acid content in the transgenic lines, no major changes were observed. In contrast, targeted analysis of the same plants revealed significantly decreased levels of strigolactone. There were no significant changes in root carotenoids, indicating that relatively little substrate is required to produce the bioactive strigolactones. The germination rate of Orobanche ramosa seeds was reduced by up to 90% on application of extract from the SlCCD7 antisense lines, compared with the wild type. Additionally, upon mycorrhizal colonization, C(13) cyclohexenone and C(14) mycorradicin apocarotenoid levels were greatly reduced in the roots of the antisense lines, implicating SlCCD7 in their biosynthesis. This work demonstrates the diverse roles of MAX3/CCD7 in strigolactone production, shoot branching, source-sink interactions and production of arbuscular mycorrhiza-induced apocarotenoids.


New Phytologist | 2012

The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis.

Wouter Kohlen; Tatsiana Charnikhova; Michiel Lammers; T. Pollina; P. Toth; I. Haider; María J. Pozo; R.A. de Maagd; Carolien Ruyter-Spira; Harro J. Bouwmeester; Juan A. López-Ráez

Strigolactones are plant hormones that regulate both above- and belowground plant architecture. Strigolactones were initially identified as rhizosphere signaling molecules. In the present work, the tomato (Solanum lycopersicum) CAROTENOID CLEAVAGE DIOXYGENASE 8 (SlCCD8) was cloned and its role in rhizosphere signaling and plant physiology assessed by generating knock-down lines. Transgenic SlCCD8 plants were generated by RNAi-mediated silencing. Lines with different levels of strigolactone reduction--confirmed by UPLC-MS/MS--were selected and their phenotypes investigated. Lines exhibiting reduced SlCCD8 levels displayed increased shoot branching, reduced plant height, increased number of nodes and excessive adventitious root development. In addition, these lines exhibited reproductive phenotypes such as smaller flowers, fruits, as well as fewer and smaller seeds per fruit. Furthermore, we show that strigolactone loading to the xylem sap is possibly restricted to orobanchol. Infestation by Phelipanche ramosa was reduced by 90% in lines with a relatively mild reduction in strigolactone biosynthesis and secretion while arbuscular mycorrhizal symbiosis, apical dominance and fruit yield were only mildly affected. This demonstrates that reduction of strigolactone biosynthesis could be a suitable tool in parasitic weed management. Furthermore, our results suggest that strigolactones are involved in even more physiological processes than so far assumed.


New Phytologist | 2010

Does abscisic acid affect strigolactone biosynthesis

Juan A. López-Ráez; Wouter Kohlen; Tatsiana Charnikhova; Patrick P.J. Mulder; Anna K. Undas; Martin J. Sergeant; Francel Verstappen; Andrew J. Thompson; Carolien Ruyter-Spira; Harro J. Bouwmeester

SUMMARY *Strigolactones are considered a novel class of plant hormones that, in addition to their endogenous signalling function, are exuded into the rhizosphere acting as a signal to stimulate hyphal branching of arbuscular mycorrhizal (AM) fungi and germination of root parasitic plant seeds. Considering the importance of the strigolactones and their biosynthetic origin (from carotenoids), we investigated the relationship with the plant hormone abscisic acid (ABA). *Strigolactone production and ABA content in the presence of specific inhibitors of oxidative carotenoid cleavage enzymes and in several tomato ABA-deficient mutants were analysed by LC-MS/MS. In addition, the expression of two genes involved in strigolactone biosynthesis was studied. *The carotenoid cleavage dioxygenase (CCD) inhibitor D2 reduced strigolactone but not ABA content of roots. However, in abamineSG-treated plants, an inhibitor of 9-cis-epoxycarotenoid dioxygenase (NCED), and the ABA mutants notabilis, sitiens and flacca, ABA and strigolactones were greatly reduced. The reduction in strigolactone production correlated with the downregulation of LeCCD7 and LeCCD8 genes in all three mutants. *The results show a correlation between ABA levels and strigolactone production, and suggest a role for ABA in the regulation of strigolactone biosynthesis.


Pest Management Science | 2009

Strigolactones: ecological significance and use as a target for parasitic plant control

Juan A. López-Ráez; Radoslava Matusova; Catarina Cardoso; Muhammad Jamil; Tatsiana Charnikhova; Wouter Kohlen; Carolien Ruyter-Spira; Francel Verstappen; Harro J. Bouwmeester

Parasitic weeds cause severe damage to important agricultural crops. Although some promising control methods against these parasitic plants have been developed, new strategies continue to be relevant in integrated approaches. The life cycle for root parasitic weeds is intimately associated with their host and is a suitable target for such new control strategies, particularly when directed at the early stages of the host-parasite interaction. Here, the authors focus on knowledge of the germination stimulants-strigolactones-for the root parasitic plants Striga and Orobanche spp. and discuss their biosynthetic origin, ecological significance and physiological and biochemical regulation. In addition, the existing and possible new control strategies that are based on this knowledge, and that could lead to more efficient control methods against these root parasitic weeds, are reviewed.


The Plant Cell | 2014

Auxin Depletion from the Leaf Axil Conditions Competence for Axillary Meristem Formation in Arabidopsis and Tomato

Quan Wang; Wouter Kohlen; Susanne Rossmann; Teva Vernoux; Klaus Theres

During vegetative development of tomato and Arabidopsis, auxin is depleted from leaf axils, resulting in a low auxin environment that is required for axillary bud formation. Local manipulation of auxin levels or auxin signaling disrupts the plants ability to form axillary meristems. The enormous variation in architecture of flowering plants is based to a large extent on their ability to form new axes of growth throughout their life span. Secondary growth is initiated from groups of pluripotent cells, called meristems, which are established in the axils of leaves. Such meristems form lateral organs and develop into a side shoot or a flower, depending on the developmental status of the plant and environmental conditions. The phytohormone auxin is well known to play an important role in inhibiting the outgrowth of axillary buds, a phenomenon known as apical dominance. However, the role of auxin in the process of axillary meristem formation is largely unknown. In this study, we show in the model species Arabidopsis thaliana and tomato (Solanum lycopersicum) that auxin is depleted from leaf axils during vegetative development. Disruption of polar auxin transport compromises auxin depletion from the leaf axil and axillary meristem initiation. Ectopic auxin biosynthesis in leaf axils interferes with axillary meristem formation, whereas repression of auxin signaling in polar auxin transport mutants can largely rescue their branching defects. These results strongly suggest that depletion of auxin from leaf axils is a prerequisite for axillary meristem formation during vegetative development.

Collaboration


Dive into the Wouter Kohlen's collaboration.

Top Co-Authors

Avatar

Harro J. Bouwmeester

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Tatsiana Charnikhova

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Juan A. López-Ráez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Carolien Ruyter-Spira

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Francel Verstappen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Ralph Bours

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

René Geurts

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Ton Bisseling

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arjan van Zeijl

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge