Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wouter Meuleman is active.

Publication


Featured researches published by Wouter Meuleman.


Nature | 2008

Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions

Lars Guelen; Ludo Pagie; Emilie Brasset; Wouter Meuleman; Marius M.B. Faza; Wendy Talhout; Bert H.J. Eussen; Annelies de Klein; Lodewyk L. Wessels; Wouter de Laat; Bas van Steensel

The architecture of human chromosomes in interphase nuclei is still largely unknown. Microscopy studies have indicated that specific regions of chromosomes are located in close proximity to the nuclear lamina (NL). This has led to the idea that certain genomic elements may be attached to the NL, which may contribute to the spatial organization of chromosomes inside the nucleus. However, sequences in the human genome that interact with the NL in vivo have not been identified. Here we construct a high-resolution map of the interaction sites of the entire genome with NL components in human fibroblasts. This map shows that genome–lamina interactions occur through more than 1,300 sharply defined large domains 0.1–10 megabases in size. These lamina-associated domains (LADs) are typified by low gene-expression levels, indicating that LADs represent a repressive chromatin environment. The borders of LADs are demarcated by the insulator protein CTCF, by promoters that are oriented away from LADs, or by CpG islands, suggesting possible mechanisms of LAD confinement. Taken together, these results demonstrate that the human genome is divided into large, discrete domains that are units of chromosome organization within the nucleus.


Molecular Cell | 2010

Molecular Maps of the Reorganization of Genome-Nuclear Lamina Interactions during Differentiation

Daan Peric-Hupkes; Wouter Meuleman; Ludo Pagie; Sophia W.M. Bruggeman; Irina Solovei; Wim Brugman; Stefan Gräf; Paul Flicek; Ron M. Kerkhoven; Maarten van Lohuizen; Marcel J. T. Reinders; Lodewyk F. A. Wessels; Bas van Steensel

The three-dimensional organization of chromosomes within the nucleus and its dynamics during differentiation are largely unknown. To visualize this process in molecular detail, we generated high-resolution maps of genome-nuclear lamina interactions during subsequent differentiation of mouse embryonic stem cells via lineage-committed neural precursor cells into terminally differentiated astrocytes. This reveals that a basal chromosome architecture present in embryonic stem cells is cumulatively altered at hundreds of sites during lineage commitment and subsequent terminal differentiation. This remodeling involves both individual transcription units and multigene regions and affects many genes that determine cellular identity. Often, genes that move away from the lamina are concomitantly activated; many others, however, remain inactive yet become unlocked for activation in a next differentiation step. These results suggest that lamina-genome interactions are widely involved in the control of gene expression programs during lineage commitment and terminal differentiation.


The New England Journal of Medicine | 2015

FTO Obesity Variant Circuitry and Adipocyte Browning in Humans

Melina Claussnitzer; Simon N. Dankel; Kyoung-Han Kim; Gerald Quon; Wouter Meuleman; Christine Haugen; Viktoria Glunk; Isabel S. Sousa; Jacqueline L. Beaudry; Vijitha Puviindran; Nezar A. Abdennur; Jannel Liu; Per-Arne Svensson; Yi-Hsiang Hsu; Daniel J. Drucker; Gunnar Mellgren; Chi-chung Hui; Hans Hauner; Manolis Kellis

BACKGROUND Genomewide association studies can be used to identify disease-relevant genomic regions, but interpretation of the data is challenging. The FTO region harbors the strongest genetic association with obesity, yet the mechanistic basis of this association remains elusive. METHODS We examined epigenomic data, allelic activity, motif conservation, regulator expression, and gene coexpression patterns, with the aim of dissecting the regulatory circuitry and mechanistic basis of the association between the FTO region and obesity. We validated our predictions with the use of directed perturbations in samples from patients and from mice and with endogenous CRISPR-Cas9 genome editing in samples from patients. RESULTS Our data indicate that the FTO allele associated with obesity represses mitochondrial thermogenesis in adipocyte precursor cells in a tissue-autonomous manner. The rs1421085 T-to-C single-nucleotide variant disrupts a conserved motif for the ARID5B repressor, which leads to derepression of a potent preadipocyte enhancer and a doubling of IRX3 and IRX5 expression during early adipocyte differentiation. This results in a cell-autonomous developmental shift from energy-dissipating beige (brite) adipocytes to energy-storing white adipocytes, with a reduction in mitochondrial thermogenesis by a factor of 5, as well as an increase in lipid storage. Inhibition of Irx3 in adipose tissue in mice reduced body weight and increased energy dissipation without a change in physical activity or appetite. Knockdown of IRX3 or IRX5 in primary adipocytes from participants with the risk allele restored thermogenesis, increasing it by a factor of 7, and overexpression of these genes had the opposite effect in adipocytes from nonrisk-allele carriers. Repair of the ARID5B motif by CRISPR-Cas9 editing of rs1421085 in primary adipocytes from a patient with the risk allele restored IRX3 and IRX5 repression, activated browning expression programs, and restored thermogenesis, increasing it by a factor of 7. CONCLUSIONS Our results point to a pathway for adipocyte thermogenesis regulation involving ARID5B, rs1421085, IRX3, and IRX5, which, when manipulated, had pronounced pro-obesity and anti-obesity effects. (Funded by the German Research Center for Environmental Health and others.).


Cell | 2013

Chromatin Position Effects Assayed by Thousands of Reporters Integrated in Parallel

Waseem Akhtar; Johann de Jong; Alexey V. Pindyurin; Ludo Pagie; Wouter Meuleman; Jeroen de Ridder; Anton Berns; Lodewyk F. A. Wessels; Maarten van Lohuizen; Bas van Steensel

Reporter genes integrated into the genome are a powerful tool to reveal effects of regulatory elements and local chromatin context on gene expression. However, so far such reporter assays have been of low throughput. Here, we describe a multiplexing approach for the parallel monitoring of transcriptional activity of thousands of randomly integrated reporters. More than 27,000 distinct reporter integrations in mouse embryonic stem cells, obtained with two different promoters, show ∼1,000-fold variation in expression levels. Data analysis indicates that lamina-associated domains act as attenuators of transcription, likely by reducing access of transcription factors to binding sites. Furthermore, chromatin compaction is predictive of reporter activity. We also found evidence for crosstalk between neighboring genes and estimate that enhancers can influence gene expression on average over ∼20 kb. The multiplexed reporter assay is highly flexible in design and can be modified to query a wide range of aspects of gene regulation.


PLOS ONE | 2010

The Insulator Protein SU(HW) Fine-Tunes Nuclear Lamina Interactions of the Drosophila Genome

Joke G. van Bemmel; Ludo Pagie; Ulrich Braunschweig; Wim Brugman; Wouter Meuleman; Ron M. Kerkhoven; Bas van Steensel

Specific interactions of the genome with the nuclear lamina (NL) are thought to assist chromosome folding inside the nucleus and to contribute to the regulation of gene expression. High-resolution mapping has recently identified hundreds of large, sharply defined lamina-associated domains (LADs) in the human genome, and suggested that the insulator protein CTCF may help to demarcate these domains. Here, we report the detailed structure of LADs in Drosophila cells, and investigate the putative roles of five insulator proteins in LAD organization. We found that the Drosophila genome is also organized in discrete LADs, which are about five times smaller than human LADs but contain on average a similar number of genes. Systematic comparison to new and published insulator binding maps shows that only SU(HW) binds preferentially at LAD borders and at specific positions inside LADs, while GAF, CTCF, BEAF-32 and DWG are mostly absent from these regions. By knockdown and overexpression studies we demonstrate that SU(HW) weakens genome – NL interactions through a local antagonistic effect, but we did not obtain evidence that it is essential for border formation. Our results provide insights into the evolution of LAD organization and identify SU(HW) as a fine-tuner of genome – NL interactions.


Journal of Computational Biology | 2008

Biclustering Sparse Binary Genomic Data

Miranda van Uitert; Wouter Meuleman; Lodewyk F. A. Wessels

Genomic datasets often consist of large, binary, sparse data matrices. In such a dataset, one is often interested in finding contiguous blocks that (mostly) contain ones. This is a biclustering problem, and while many algorithms have been proposed to deal with gene expression data, only two algorithms have been proposed that specifically deal with binary matrices. None of the gene expression biclustering algorithms can handle the large number of zeros in sparse binary matrices. The two proposed binary algorithms failed to produce meaningful results. In this article, we present a new algorithm that is able to extract biclusters from sparse, binary datasets. A powerful feature is that biclusters with different numbers of rows and columns can be detected, varying from many rows to few columns and few rows to many columns. It allows the user to guide the search towards biclusters of specific dimensions. When applying our algorithm to an input matrix derived from TRANSFAC, we find transcription factors with distinctly dissimilar binding motifs, but a clear set of common targets that are significantly enriched for GO categories.


BMC Bioinformatics | 2008

Comparison of normalisation methods for surface-enhanced laser desorption and ionisation (SELDI) time-of-flight (TOF) mass spectrometry data

Wouter Meuleman; Judith Y. M. N. Engwegen; Marie-Christine W. Gast; Jos H. Beijnen; Marcel J. T. Reinders; Lodewyk F. A. Wessels

BackgroundMass spectrometry for biological data analysis is an active field of research, providing an efficient way of high-throughput proteome screening. A popular variant of mass spectrometry is SELDI, which is often used to measure sample populations with the goal of developing (clinical) classifiers. Unfortunately, not only is the data resulting from such measurements quite noisy, variance between replicate measurements of the same sample can be high as well. Normalisation of spectra can greatly reduce the effect of this technical variance and further improve the quality and interpretability of the data. However, it is unclear which normalisation method yields the most informative result.ResultsIn this paper, we describe the first systematic comparison of a wide range of normalisation methods, using two objectives that should be met by a good method. These objectives are minimisation of inter-spectra variance and maximisation of signal with respect to class separation. The former is assessed using an estimation of the coefficient of variation, the latter using the classification performance of three types of classifiers on real-world datasets representing two-class diagnostic problems. To obtain a maximally robust evaluation of a normalisation method, both objectives are evaluated over multiple datasets and multiple configurations of baseline correction and peak detection methods. Results are assessed for statistical significance and visualised to reveal the performance of each normalisation method, in particular with respect to using no normalisation. The normalisation methods described have been implemented in the freely available MASDA R-package.ConclusionIn the general case, normalisation of mass spectra is beneficial to the quality of data. The majority of methods we compared performed significantly better than the case in which no normalisation was used. We have shown that normalisation methods that scale spectra by a factor based on the dispersion (e.g., standard deviation) of the data clearly outperform those where a factor based on the central location (e.g., mean) is used. Additional improvements in performance are obtained when these factors are estimated locally, using a sliding window within spectra, instead of globally, over full spectra. The underperforming category of methods using a globally estimated factor based on the central location of the data includes the method used by the majority of SELDI users.


Biomarker Insights | 2008

Detection of Colorectal Cancer by Serum and Tissue Protein Profiling: A Prospective Study in a Population at Risk

Judith Y. M. N. Engwegen; Annekatrien Depla; Marianne E. Smits; Annemieke Cats; Henriëtte Tuynman; Henk A. van Heukelem; Pleun Snel; Wouter Meuleman; Lodewyk F. A. Wessels; Jan H. M. Schellens; Jos H. Beijnen

Colorectal cancer (CRC) is the second most common cause of cancer-related death in Europe and its prognosis is largely dependent on stage at diagnosis. Currently, there are no suitable tumour markers for early detection of CRC. In a retrospective study we previously found discriminative CRC serum protein profiles with surface enhanced laser desorption ionisation–-time of flight mass spectrometry (SELDI-TOF MS). We now aimed at prospective validation of these profiles. Additionally, we assessed their applicability for follow-up after surgery and investigated tissue protein profiles of patients with CRC and adenomatous polyps (AP). Serum and tissue samples were collected from patients without known malignancy with an indication for colonoscopy and patients with AP and CRC during colonoscopy. Serum samples of controls (CON; n = 359), patients with AP (n = 177) and CRC (n = 73), as well as tissue samples from AP (n = 52) and CRC (n = 47) were analysed as described previously. Peak intensities were compared by non-parametric testing. Discriminative power of differentially expressed proteins was assessed with support vector machines (SVM). We confirmed the decreased serum levels of apolipoprotein C-1 in CRC in the current population. No differences were observed between CON and AP. Apolipoprotein C-I levels did not change significantly within 1 month post-surgery, although a gradual return to normal levels was observed. Several proteins differed between AP and CRC tissue, among which a peak with similar mass as apolipoprotein C-1. This peak was increased in CRC compared to AP. Although we prospectively validated the serum decrease of apolipoprotein C-1 in CRC, serum protein profiles did not yield SVM classifiers with suitable sensitivity and specificity for classification of our patient groups.


BMC Bioinformatics | 2009

Analysis of mass spectrometry data using sub-spectra

Wouter Meuleman; Judith Y. M. N. Engwegen; Marie-Christine W. Gast; Lodewyk F. A. Wessels; Marcel J. T. Reinders

BackgroundSpectra resulting from Surface-Enhanced Laser Desorption/Ionisation (SELDI) mass spectrometry measurements are constructed by combining sub-spectra, each of which are the result of a single firing of the laser responsible for the process of desorption/ionisation. These firings are performed at different locations of the spot on which the sample is analysed. The final spectrum is then constructed by summing over all these sub-spectra. This process is sub-optimal in that it can average out peaks from peptides that are present in low abundance or are unevenly distributed across the spot, particularly because the amount of noise varies considerably between sub-spectra. This argues for analysing sub-spectra separately and combining results afterwards.ResultsHere, we propose to analyse these sub-spectra one-by-one and combine the results using a framework which includes a significance test. This allows one to, for the first time, attach a confidence measure to detected peaks, based on the signal strength of a peak across sub-spectra. In a comparison with three other approaches the sub-spectral approach achieves a higher sensitivity and a low FDR. We further introduce the notion of peak-bags, which provide rich information about the sub-spectral contributions to a given peak.ConclusionThe proposed procedure offers better control over the process of distinguishing signal from noise, resulting in an improved performance over other available methods. Moreover, our method provides an implicit deconvolution of peaks, yielding insight in the actual shape of a peak, potentially aiding in a deeper understanding of peak distribution.AvailabilityImplementations of the algorithm in R are available upon request.


Nature | 2013

Corrigendum: Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions

Lars Guelen; Ludo Pagie; Emilie Brasset; Wouter Meuleman; Marius M.B. Faza; Wendy Talhout; Bert H.J. Eussen; Annelies de Klein; Lodewyk F. A. Wessels; Wouter de Laat; Bas van Steensel

This corrects the article DOI: 10.1038/nature06947

Collaboration


Dive into the Wouter Meuleman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bas van Steensel

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Ludo Pagie

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Marcel J. T. Reinders

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Manolis Kellis

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annelies de Klein

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Bert H.J. Eussen

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Daan Peric-Hupkes

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Emilie Brasset

Erasmus University Rotterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge