Wouter Peters
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wouter Peters.
Science | 2007
Britton B. Stephens; Kevin Robert Gurney; Pieter P. Tans; Colm Sweeney; Wouter Peters; Lori Bruhwiler; Philippe Ciais; Michel Ramonet; P. Bousquet; Takakiyo Nakazawa; Shuji Aoki; Toshinobu Machida; Gen Inoue; Nikolay Vinnichenko; Jon Lloyd; Armin Jordan; Martin Heimann; Olga Shibistova; R. L. Langenfelds; L. Paul Steele; R. J. Francey; A. Scott Denning
Measurements of midday vertical atmospheric CO2 distributions reveal annual-mean vertical CO2 gradients that are inconsistent with atmospheric models that estimate a large transfer of terrestrial carbon from tropical to northern latitudes. The three models that most closely reproduce the observed annual-mean vertical CO2 gradients estimate weaker northern uptake of –1.5 petagrams of carbon per year (Pg C year–1) and weaker tropical emission of +0.1 Pg C year–1 compared with previous consensus estimates of –2.4 and +1.8 Pg C year–1, respectively. This suggests that northern terrestrial uptake of industrial CO2 emissions plays a smaller role than previously thought and that, after subtracting land-use emissions, tropical ecosystems may currently be strong sinks for CO2.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Wouter Peters; Andrew R. Jacobson; Colm Sweeney; Arlyn Elizabeth Andrews; T. J. Conway; K. Masarie; J. B. Miller; L. M. P. Bruhwiler; G. Pétron; Adam Hirsch; Douglas E. J. Worthy; G. R. van der Werf; James T. Randerson; Paul O. Wennberg; Maarten C. Krol; Pieter P. Tans
We present an estimate of net CO2 exchange between the terrestrial biosphere and the atmosphere across North America for every week in the period 2000 through 2005. This estimate is derived from a set of 28,000 CO2 mole fraction observations in the global atmosphere that are fed into a state-of-the-art data assimilation system for CO2 called CarbonTracker. By design, the surface fluxes produced in CarbonTracker are consistent with the recent history of CO2 in the atmosphere and provide constraints on the net carbon flux independent from national inventories derived from accounting efforts. We find the North American terrestrial biosphere to have absorbed −0.65 PgC/yr (1 petagram = 1015 g; negative signs are used for carbon sinks) averaged over the period studied, partly offsetting the estimated 1.85 PgC/yr release by fossil fuel burning and cement manufacturing. Uncertainty on this estimate is derived from a set of sensitivity experiments and places the sink within a range of −0.4 to −1.0 PgC/yr. The estimated sink is located mainly in the deciduous forests along the East Coast (32%) and the boreal coniferous forests (22%). Terrestrial uptake fell to −0.32 PgC/yr during the large-scale drought of 2002, suggesting sensitivity of the contemporary carbon sinks to climate extremes. CarbonTracker results are in excellent agreement with a wide collection of carbon inventories that form the basis of the first North American State of the Carbon Cycle Report (SOCCR), to be released in 2007. All CarbonTracker results are freely available at http://carbontracker.noaa.gov.
Global Biogeochemical Cycles | 2008
Prabir K. Patra; R. M. Law; Wouter Peters; Christian Rödenbeck; Masayuki Takigawa; C. Aulagnier; Ian T. Baker; D. Bergmann; P. Bousquet; Jørgen Brandt; L. M. P. Bruhwiler; Philip Cameron-Smith; Jesper Christensen; F. Delage; A. S. Denning; S. Fan; Camilla Geels; Sander Houweling; Ryoichi Imasu; Ute Karstens; S. R. Kawa; J. Kleist; M. Krol; S.-J. Lin; R. Lokupitiya; Takashi Maki; Shamil Maksyutov; Yosuke Niwa; R. Onishi; N. Parazoo
The ability to reliably estimate CO2 fluxes from current in situ atmospheric CO2 measurements and future satellite CO2 measurements is dependent on transport model performance at synoptic and shorter timescales. The TransCom continuous experiment was designed to evaluate the performance of forward transport model simulations at hourly, daily, and synoptic timescales, and we focus on the latter two in this paper. Twenty-five transport models or model variants submitted hourly time series of nine predetermined tracers (seven for CO2) at 280 locations. We extracted synoptic-scale variability from daily averaged CO2 time series using a digital filter and analyzed the results by comparing them to atmospheric measurements at 35 locations. The correlations between modeled and observed synoptic CO2 variabilities were almost always largest with zero time lag and statistically significant for most models and most locations. Generally, the model results using diurnally varying land fluxes were closer to the observations compared to those obtained using monthly mean or daily average fluxes, and winter was often better simulated than summer. Model results at higher spatial resolution compared better with observations, mostly because these models were able to sample closer to the measurement site location. The amplitude and correlation of model-data variability is strongly model and season dependent. Overall similarity in modeled synoptic CO2 variability suggests that the first-order transport mechanisms are fairly well parameterized in the models, and no clear distinction was found between the meteorological analyses in capturing the synoptic-scale dynamics.
Proceedings of the National Academy of Sciences of the United States of America | 2008
G. R. van der Werf; Jan Dempewolf; S. N. Trigg; James T. Randerson; Prasad S. Kasibhatla; Louis Giglio; Daniel Murdiyarso; Wouter Peters; Douglas C. Morton; G.J. Collatz; A. J. Dolman; Ruth S. DeFries
Drainage of peatlands and deforestation have led to large-scale fires in equatorial Asia, affecting regional air quality and global concentrations of greenhouse gases. Here we used several sources of satellite data with biogeochemical and atmospheric modeling to better understand and constrain fire emissions from Indonesia, Malaysia, and Papua New Guinea during 2000–2006. We found that average fire emissions from this region [128 ± 51 (1σ) Tg carbon (C) year−1, T = 1012] were comparable to fossil fuel emissions. In Borneo, carbon emissions from fires were highly variable, fluxes during the moderate 2006 El Niño more than 30 times greater than those during the 2000 La Niña (and with a 2000–2006 mean of 74 ± 33 Tg C yr−1). Higher rates of forest loss and larger areas of peatland becoming vulnerable to fire in drought years caused a strong nonlinear relation between drought and fire emissions in southern Borneo. Fire emissions from Sumatra showed a positive linear trend, increasing at a rate of 8 Tg C year−2 (approximately doubling during 2000–2006). These results highlight the importance of including deforestation in future climate agreements. They also imply that land manager responses to expected shifts in tropical precipitation may critically determine the strength of climate–carbon cycle feedbacks during the 21st century.
Geophysical Research Letters | 2001
Meinrat O. Andreae; Paulo Artaxo; H. Fischer; Saulo R. Freitas; J.M. Grégoire; Armin Hansel; P. Hoor; R. Kormann; Radovan Krejci; L. Lange; J. Lelieveld; W. Lindinger; K. Longo; Wouter Peters; M. de Reus; Bert Scheeren; M. A. F. Silva Dias; Johan Ström; P. F. J. van Velthoven; J. Williams
During LBA-CLAIRE-98, we found atmospheric layers with aged biomass smoke at altitudes >10 km over Suriname. CO, CO2, acetonitrile, methyl chloride, hydrocarbons, NO, O3, and aerosols were strongly enhanced in these layers. We estimate that 80-95% of accumulation mode aerosols had been removed during convective transport. Trajectories show that the plumes originated from large fires near the Brazil/Venezuela border during March 1998. This smoke was entrained into deep convection over the northern Amazon, transported out over the Pacific, and then returned to South America by the circulation around a large upper-level anticyclone. Our observations provide evidence for the importance of deep convection in the equatorial region as a mechanism to transport large amounts of pyrogenic pollutants into the upper troposphere. The entrainment of biomass smoke into tropical convective clouds may have significant effects on cloud microphysics and climate dynamics.
Global Biogeochemical Cycles | 2006
A. I. Hirsch; Anna M. Michalak; L. M. P. Bruhwiler; Wouter Peters; E. J. Dlugokencky; Pieter P. Tans
Northern Land, and Northern Oceans). We found that compared to our a priori estimate (from the International Geosphere-Biosphere Programme’s Global Emissions Inventory Activity), the a posteriori flux was much lower from 90� S–30� S and substantially higher from equator to 30� N. Consistent with these results, the a posteriori flux from the Southern Oceans region was lower than the a priori estimate, while Tropical Land and Tropical Ocean estimates were higher. The ratio of Northern Hemisphere to Southern Hemisphere fluxes was found to range from 1.9 to 5.2 (depending on the model setup), which is higher than the a priori ratio (1.5) and at the high end of previous estimates. Globally, ocean emissions contributed 26–36% of the total flux (again depending on the model setup), consistent with the a priori estimate (29%), though somewhat higher than some other previous estimates.
Global Biogeochemical Cycles | 2008
R. M. Law; Wouter Peters; Christian Rödenbeck; C. Aulagnier; Ian T. Baker; D. Bergmann; P. Bousquet; Jørgen Brandt; L. M. P. Bruhwiler; Philip Cameron-Smith; Jesper Christensen; F. Delage; A. S. Denning; S. Fan; Camilla Geels; Sander Houweling; Ryoichi Imasu; Ute Karstens; S. R. Kawa; J. Kleist; M. Krol; S.-J. Lin; R. Lokupitiya; Takashi Maki; Shamil Maksyutov; Yosuke Niwa; R. Onishi; N. Parazoo; Prabir K. Patra; G. Pieterse
[1] A forward atmospheric transport modeling experiment has been coordinated by the TransCom group to investigate synoptic and diurnal variations in CO2. Model simulations were run for biospheric, fossil, and air-sea exchange of CO2 and for SF6 and radon for 2000-2003. Twenty-five models or model variants participated in the comparison. Hourly concentration time series were submitted for 280 sites along with vertical profiles, fluxes, and meteorological variables at 100 sites. The submitted results have been analyzed for diurnal variations and are compared with observed CO2 in 2002. Mean summer diurnal cycles vary widely in amplitude across models. The choice of sampling location and model level account for part of the spread suggesting that representation errors in these types of models are potentially large. Despite the model spread, most models simulate the relative variation in diurnal amplitude between sites reasonably well. The modeled diurnal amplitude only shows a weak relationship with vertical resolution across models; differences in near-surface transport simulation appear to play a major role. Examples are also presented where there is evidence that the models show useful skill in simulating seasonal and synoptic changes in diurnal amplitude.
Journal of Geophysical Research | 2005
Anna M. Michalak; Adam Hirsch; Lori Bruhwiler; Kevin Robert Gurney; Wouter Peters; Pieter P. Tans
[1] This paper introduces a Maximum Likelihood (ML) approach for estimating the statistical parameters required for the covariance matrices used in the solution of Bayesian inverse problems aimed at estimating surface fluxes of atmospheric trace gases. The method offers an objective methodology for populating the covariance matrices required in Bayesian inversions, thereby resulting in better estimates of the uncertainty associated with derived fluxes and minimizing the risk of inversions being biased by unrealistic covariance parameters. In addition, a method is presented for estimating the uncertainty associated with these covariance parameters. The ML method is demonstrated using a typical inversion setup with 22 flux regions and 75 observation stations from the National Oceanic and Atmospheric Administration-Climate Monitoring and Diagnostics Laboratory (NOAA-CMDL) Cooperative Air Sampling Network with available monthly averaged carbon dioxide data. Flux regions and observation locations are binned according to various characteristics, and the variances of the model-data mismatch and of the errors associated with the a priori flux distribution are estimated from the available data.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Sebastian Wolf; Trevor F. Keenan; Joshua B. Fisher; Dennis D. Baldocchi; Ankur R. Desai; Andrew D. Richardson; Russell L. Scott; Beverly E. Law; Marcy E. Litvak; Nathaniel A. Brunsell; Wouter Peters; Ingrid T. van der Laan-Luijkx
Significance Carbon uptake by terrestrial ecosystems mitigates the impact of anthropogenic fossil fuel emissions on atmospheric CO2 concentrations, but the strength of this carbon sink is highly sensitive to large-scale extreme climate events. In 2012, the United States experienced the most severe drought since the Dust Bowl period, along with the warmest spring on record. Here, we quantify the impact of this climate anomaly on the carbon cycle. Our results show that warming-induced earlier vegetation activity increased spring carbon uptake, and thus compensated for reduced carbon uptake during the summer drought in 2012. This compensation, however, came at the cost of soil moisture depletion from increased spring evapotranspiration that likely enhanced summer heating through land-atmosphere coupling. The global terrestrial carbon sink offsets one-third of the world’s fossil fuel emissions, but the strength of this sink is highly sensitive to large-scale extreme events. In 2012, the contiguous United States experienced exceptionally warm temperatures and the most severe drought since the Dust Bowl era of the 1930s, resulting in substantial economic damage. It is crucial to understand the dynamics of such events because warmer temperatures and a higher prevalence of drought are projected in a changing climate. Here, we combine an extensive network of direct ecosystem flux measurements with satellite remote sensing and atmospheric inverse modeling to quantify the impact of the warmer spring and summer drought on biosphere-atmosphere carbon and water exchange in 2012. We consistently find that earlier vegetation activity increased spring carbon uptake and compensated for the reduced uptake during the summer drought, which mitigated the impact on net annual carbon uptake. The early phenological development in the Eastern Temperate Forests played a major role for the continental-scale carbon balance in 2012. The warm spring also depleted soil water resources earlier, and thus exacerbated water limitations during summer. Our results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake. However, the results also suggest that the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere–atmosphere feedbacks.
Journal of Atmospheric Chemistry | 2001
Ulrich Pöschl; J. Williams; P. Hoor; H. Fischer; Paul J. Crutzen; Carsten Warneke; R. Holzinger; Armin Hansel; A. Jordan; W. Lindinger; H. A. Scheeren; Wouter Peters; J. Lelieveld
Airborne measurements of acetone were performed overthe tropical rainforest in Surinam(2°–7° N, 54°–58° W, 0–12 kmaltitude) during the LBA-CLAIRE campaign in March1998, using a novel proton transfer reaction massspectrometer (PTR-MS) that enables the on-linemonitoring of volatile organic compounds (VOC) with ahigher proton affinity than water. The measuredacetone volume mixing ratios ranged from ∼0.1 nmol/molup to ∼8 nmol/mol with an overall average of 2.6nmol/mol and a standard deviation of 1.0 nmol/mol. Theobserved altitude profile and correlations with CO,acetonitrile, propane and wind direction are discussedwith respect to potential acetone sources. No linearcorrelation between acetone and CO mixing ratios wasobserved, at variance with results of previousmeasurement campaigns. The mean acetone/CO ratio(0.022) was substantially higher than typical valuesfound before. The abundance of acetone appears to beinfluenced, but not dominated, by biomass burning,thus suggesting large emissions of acetone and/oracetone precursors, such as possibly 2-propanol, fromliving plants or decaying litter in the rainforest.