Wouter Verhesen
Maastricht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wouter Verhesen.
Aging Cell | 2011
Geert C. van Almen; Wouter Verhesen; Rick van Leeuwen; Mathijs van de Vrie; Casper Eurlings; Mark W.M. Schellings; Melissa Swinnen; Jack P.M. Cleutjens; Marc A. M. J. van Zandvoort; Stephane Heymans; Blanche Schroen
To understand the process of cardiac aging, it is of crucial importance to gain insight into the age‐related changes in gene expression in the senescent failing heart. Age‐related cardiac remodeling is known to be accompanied by changes in extracellular matrix (ECM) gene and protein levels. Small noncoding microRNAs regulate gene expression in cardiac development and disease and have been implicated in the aging process and in the regulation of ECM proteins. However, their role in age‐related cardiac remodeling and heart failure is unknown. In this study, we investigated the aging‐associated microRNA cluster 17–92, which targets the ECM proteins connective tissue growth factor (CTGF) and thrombospondin‐1 (TSP‐1). We employed aged mice with a failure‐resistant (C57Bl6) and failure‐prone (C57Bl6 × 129Sv) genetic background and extrapolated our findings to human age‐associated heart failure. In aging‐associated heart failure, we linked an aging‐induced increase in the ECM proteins CTGF and TSP‐1 to a decreased expression of their targeting microRNAs 18a, 19a, and 19b, all members of the miR‐17–92 cluster. Failure‐resistant mice showed an opposite expression pattern for both the ECM proteins and the microRNAs. We showed that these expression changes are specific for cardiomyocytes and are absent in cardiac fibroblasts. In cardiomyocytes, modulation of miR‐18/19 changes the levels of ECM proteins CTGF and TSP‐1 and collagens type 1 and 3. Together, our data support a role for cardiomyocyte‐derived miR‐18/19 during cardiac aging, in the fine‐tuning of cardiac ECM protein levels. During aging, decreased miR‐18/19 and increased CTGF and TSP‐1 levels identify the failure‐prone heart.
Circulation | 2013
Stephane Heymans; Maarten F. Corsten; Wouter Verhesen; Paolo Carai; Rick van Leeuwen; Kevin Custers; Tim Peters; Mark Hazebroek; Lauran Stöger; Erwin Wijnands; Ben J. A. Janssen; Esther E. Creemers; Yigal M. Pinto; Dirk Grimm; Nina Schürmann; Elena Vigorito; Thomas Thum; Frank Stassen; Xiaoke Yin; Manuel Mayr; Leon J. De Windt; Esther Lutgens; Kristiaan Wouters; Menno P. J. de Winther; Serena Zacchigna; Mauro Giacca; Marc van Bilsen; Anna-Pia Papageorgiou; Blanche Schroen
Background— Cardiac hypertrophy and subsequent heart failure triggered by chronic hypertension represent major challenges for cardiovascular research. Beyond neurohormonal and myocyte signaling pathways, growing evidence suggests inflammatory signaling pathways as therapeutically targetable contributors to this process. We recently reported that microRNA-155 is a key mediator of cardiac inflammation and injury in infectious myocarditis. Here, we investigated the impact of microRNA-155 manipulation in hypertensive heart disease. Methods and Results— Genetic loss or pharmacological inhibition of the leukocyte-expressed microRNA-155 in mice markedly reduced cardiac inflammation, hypertrophy, and dysfunction on pressure overload. These alterations were macrophage dependent because in vivo cardiomyocyte-specific microRNA-155 manipulation did not affect cardiac hypertrophy or dysfunction, whereas bone marrow transplantation from wild-type mice into microRNA-155 knockout animals rescued the hypertrophic response of the cardiomyocytes and vice versa. In vitro, media from microRNA-155 knockout macrophages blocked the hypertrophic growth of stimulated cardiomyocytes, confirming that macrophages influence myocyte growth in a microRNA-155-dependent paracrine manner. These effects were at least partly mediated by the direct microRNA-155 target suppressor of cytokine signaling 1 (Socs1) because Socs1 knockdown in microRNA-155 knockout macrophages largely restored their hypertrophy-stimulating potency. Conclusions— Our findings reveal that microRNA-155 expression in macrophages promotes cardiac inflammation, hypertrophy, and failure in response to pressure overload. These data support the causative significance of inflammatory signaling in hypertrophic heart disease and demonstrate the feasibility of therapeutic microRNA targeting of inflammation in heart failure.
Circulation Research | 2012
Maarten F. Corsten; Anna-Pia Papageorgiou; Wouter Verhesen; Paolo Carai; Morten Lindow; Susanna Obad; Georg Summer; Susan L. Coort; Mark Hazebroek; Rick van Leeuwen; Marion J. J. Gijbels; Erwin Wijnands; Erik A.L. Biessen; Menno P. J. de Winther; Frank Stassen; Peter Carmeliet; Sakari Kauppinen; Blanche Schroen; Stephane Heymans
Rationale: Viral myocarditis results from an adverse immune response to cardiotropic viruses, which causes irreversible myocyte destruction and heart failure in previously healthy people. The involvement of microRNAs and their usefulness as therapeutic targets in this process are unknown. Objective: To identify microRNAs involved in viral myocarditis pathogenesis and susceptibility. Methods and Results: Cardiac microRNAs were profiled in both human myocarditis and in Coxsackievirus B3-injected mice, comparing myocarditis-susceptible with nonsusceptible mouse strains longitudinally. MicroRNA responses diverged depending on the susceptibility to myocarditis after viral infection in mice. MicroRNA-155, -146b, and -21 were consistently and strongly upregulated during acute myocarditis in both humans and susceptible mice. We found that microRNA-155 expression during myocarditis was localized primarily in infiltrating macrophages and T lymphocytes. Inhibition of microRNA-155 by a systemically delivered LNA-anti-miR attenuated cardiac infiltration by monocyte-macrophages, decreased T lymphocyte activation, and reduced myocardial damage during acute myocarditis in mice. These changes were accompanied by the derepression of the direct microRNA-155 target PU.1 in cardiac inflammatory cells. Beyond the acute phase, microRNA-155 inhibition reduced mortality and improved cardiac function during 7 weeks of follow-up. Conclusions: Our data show that cardiac microRNA dysregulation is a characteristic of both human and mouse viral myocarditis. The inflammatory microRNA-155 is upregulated during acute myocarditis, contributes to the adverse inflammatory response to viral infection of the heart, and is a potential therapeutic target for viral myocarditis.
Cardiovascular Research | 2012
Anna-Pia Papageorgiou; Melissa Swinnen; Davy Vanhoutte; Thierry Vandendriessche; Marinee Chuah; D. Lindner; Wouter Verhesen; Bart de Vries; Jan D'hooge; Esther Lutgens; Dirk Westermann; Peter Carmeliet; Stephane Heymans
AIMS Thrombospondin-2 (TSP-2) modulates matrix integrity and myocyte survival in the hypertensive or ageing heart. Whether TSP-2 may affect cardiac inflammation and injury, in particular during acute viral myocarditis, is completely unknown. METHODS AND RESULTS Therefore, mortality, cardiac inflammation, and function were assessed in TSP-2-null (KO) and wild-type (WT) mice in human Coxsackie virus B3 (CVB3)-induced myocarditis. TSP-2 KO had an increased mortality when compared with WT mice during viral myocarditis. The absence of TSP-2 resulted in increased cardiac inflammation and injury at 14 days, which resulted in depressed systolic function [fractional shortening (FS); 34 ± 2.6 in WT vs. 24 ± 1.8 in KO mice, P< 0.05] and increased cardiac dilatation (end-diastolic dimensions, mm; 3.7 ± 0.09 in WT vs. 4.8 ± 0.06 in KO mice, P< 0.05) 35 days post-infection. Lack of TSP-2 resulted in a decreased activation of the anti-inflammatory T-regulatory cells, as indicated by a lower number of CD25-positive T-cells, and significantly decreased gene expression of regulatory T-cell markers, Foxp3 and CTLA-4. Finally, overexpression of TSP-2 in WT hearts using cardiotropic vectors derived from adeno-associated virus serotype 9 (AAV9) inhibited cardiac inflammation and injury at 14 days and improved cardiac function at 35 days post-CVB3 infection when compared with control AAV9. CONCLUSION TSP-2 has a protective role against cardiac inflammation, injury, and dysfunction in acute viral myocarditis.
Journal of Molecular and Cellular Cardiology | 2011
Geert C. van Almen; Melissa Swinnen; Paolo Carai; Wouter Verhesen; Jack P.M. Cleutjens; Jan D'hooge; Fons Verheyen; Yigal M. Pinto; Blanche Schroen; Peter Carmeliet; Stephane Heymans
Clinical use of the antineoplastic agent doxorubicin (DOX) is limited by its cardiomyocyte toxicity. Attempts to decrease cardiomyocyte injury showed promising results in vitro, but failed to reduce the adverse effects of DOX in vivo, suggesting that other mechanisms contribute to its cardiotoxicity as well. Evidence that DOX also induces cardiac injury by compromising extracellular matrix integrity is lacking. The matricellular protein thrombospondin-2 (TSP-2) is known for its matrix-preserving function, and for modulating cellular function. Here, we investigated whether TSP-2 modulates the process of doxorubicin-induced cardiomyopathy (DOX-CMP). TSP-2-knockout (TSP-2-KO) and wild-type (WT) mice were treated with DOX (2 mg/kg/week) for 12 weeks to induce DOX-CMP. Mortality was significantly increased in TSP-2-KO compared to WT mice. Surviving DOX-treated TSP-2-KO mice had depressed cardiac function compared to WT animals, accompanied by increased cardiomyocyte apoptosis and matrix damage. Enhanced myocyte damage in the absence of TSP-2 was associated with impaired activation of the Akt signaling pathway in TSP-2-KO compared to WT. The absence of TSP-2, in vivo and in vitro, reduced Akt activation both under non-treated conditions and after DOX. Importantly, inhibition of Akt phosphorylation in cardiomyocytes significantly reduced TSP-2 expression, unveiling a unique feedback loop between Akt and TSP-2. Finally, enhanced matrix disruption in DOX-treated TSP-2-KO hearts went along with increased matrix metalloproteinase-2 levels. Taken together, this study is the first to provide evidence for the implication of the matrix element TSP-2 in protecting against DOX-induced cardiac injury and dysfunction.
European Heart Journal | 2015
Maarten F. Corsten; Ward Heggermont; Anna-Pia Papageorgiou; Sophie Deckx; Aloys Tijsma; Wouter Verhesen; Rick van Leeuwen; Paolo Carai; Hendrik-Jan Thibaut; Kevin Custers; Georg Summer; Mark Hazebroek; Fons Verheyen; Johan Neyts; Blanche Schroen; Stephane Heymans
AIMS Viral myocarditis (VM) is an important cause of heart failure and sudden cardiac death in young healthy adults; it is also an aetiological precursor of dilated cardiomyopathy. We explored the role of the miR-221/-222 family that is up-regulated in VM. METHODS AND RESULTS Here, we show that microRNA-221 (miR-221) and miR-222 levels are significantly elevated during acute VM caused by Coxsackievirus B3 (CVB3). Both miRs are expressed by different cardiac cells and by infiltrating inflammatory cells, but their up-regulation upon myocarditis is mostly exclusive for the cardiomyocyte. Systemic inhibition of miR-221/-222 in mice increased cardiac viral load, prolonged the viraemic state, and strongly aggravated cardiac injury and inflammation. Similarly, in vitro, overexpression of miR-221 and miR-222 inhibited enteroviral replication, whereas knockdown of this miR-cluster augmented viral replication. We identified and confirmed a number of miR-221/-222 targets that co-orchestrate the increased viral replication and inflammation, including ETS1/2, IRF2, BCL2L11, TOX, BMF, and CXCL12. In vitro inhibition of IRF2, TOX, or CXCL12 in cardiomyocytes significantly dampened their inflammatory response to CVB3 infection, confirming the functionality of these targets in VM and highlighting the importance of miR-221/-222 as regulators of the cardiac response to VM. CONCLUSIONS The miR-221/-222 cluster orchestrates the antiviral and inflammatory immune response to viral infection of the heart. Its inhibition increases viral load, inflammation, and overall cardiac injury upon VM.
Circulation | 2017
Ward Heggermont; Anna-Pia Papageorgiou; Annelies Quaegebeur; Sophie Deckx; Paolo Carai; Wouter Verhesen; Guy Eelen; Sandra Schoors; Rick van Leeuwen; Sergey Alekseev; Ies Elzenaar; Stefan Vinckier; Peter Pokreisz; Ann-Sophie Walravens; Rik Gijsbers; Chris Van den Haute; Alexander Nickel; Blanche Schroen; Marc van Bilsen; Stefan Janssens; Christoph Maack; Yigal M. Pinto; Peter Carmeliet; Stephane Heymans
Background: Cardiovascular diseases remain the predominant cause of death worldwide, with the prevalence of heart failure continuing to increase. Despite increased knowledge of the metabolic alterations that occur in heart failure, novel therapies to treat the observed metabolic disturbances are still lacking. Methods: Mice were subjected to pressure overload by means of angiotensin-II infusion or transversal aortic constriction. MicroRNA-146a was either genetically or pharmacologically knocked out or genetically overexpressed in cardiomyocytes. Furthermore, overexpression of dihydrolipoyl succinyltransferase (DLST) in the murine heart was performed by means of an adeno-associated virus. Results: MicroRNA-146a was upregulated in whole heart tissue in multiple murine pressure overload models. Also, microRNA-146a levels were moderately increased in left ventricular biopsies of patients with aortic stenosis. Overexpression of microRNA-146a in cardiomyocytes provoked cardiac hypertrophy and left ventricular dysfunction in vivo, whereas genetic knockdown or pharmacological blockade of microRNA-146a blunted the hypertrophic response and attenuated cardiac dysfunction in vivo. Mechanistically, microRNA-146a reduced its target DLST—the E2 subcomponent of the &agr;-ketoglutarate dehydrogenase complex, a rate-controlling tricarboxylic acid cycle enzyme. DLST protein levels significantly decreased on pressure overload in wild-type mice, paralleling a decreased oxidative metabolism, whereas DLST protein levels and hence oxidative metabolism were partially maintained in microRNA-146a knockout mice. Moreover, overexpression of DLST in wild-type mice protected against cardiac hypertrophy and dysfunction in vivo. Conclusions: Altogether we show that the microRNA-146a and its target DLST are important metabolic players in left ventricular dysfunction.
Cardiovascular Research | 2015
Anna-Pia Papageorgiou; Ward Heggermont; Marieke Rienks; Paolo Carai; Lies Langouche; Wouter Verhesen; Rudolf A. de Boer; Stephane Heymans
AIMS Viral myocarditis (VM) is severe cardiac inflammation that can result in sudden death or congestive heart failure in previously healthy adults, with no effective therapy. Liver X receptor (LXR) agonists have both anti-inflammatory and lipid-lowering properties. This study investigates whether LXR agonist T0901317 may modulate viral replication and cardiac inflammation during VM. METHODS AND RESULTS (i) Adult mice were administered T0901317 or vehicle with the onset of inflammation during CVB3 virus myocarditis or (ii) treated 2 days prior to CVB3 infection. Against what we expected, T0901317 treatment did not alter leucocyte infiltration after CVB3 infection; yet pre-administration with T0901317 resulted in increased mortality upon CVB3 infection, higher cardiac viral presence, and increased cardiomyocyte damage when compared with the vehicle. Furthermore, we show a correlation of fatty acid synthase (FAS) and sterol regulatory element-binding protein 1c (SREBP-1c) with CVB3 viral load in the heart and that T0901317 is able to enhance the cardiac expression of FAS and SREBP-1c. Finally, we show in vitro that T0901317 is able to exaggerate CVB3-mediated damage of Vero cells, whereas inhibitors of FAS and the SREBP-1c reduce the viral presence of CVB3 in neonatal cardiomyocytes. CONCLUSION LXR agonism does not modulate cardiac inflammation, but exacerbates virus-mediated myocardial damage during VM by stimulating lipid biosynthesis and enhancing CVB3 replication.
Cellular and Molecular Life Sciences | 2017
Marieke Rienks; Anna Papageorgiou; Kristiaan Wouters; Wouter Verhesen; Rick van Leeuwen; Paolo Carai; Georg Summer; Dirk Westermann; Stephane Heymans
BackgroundViral myocarditis can severely damage the myocardium through excessive infiltration of immune cells. Osteoglycin (OGN) is part of the small leucine-rich repeat proteoglycan (SLRP) family. SLRP’s may affect inflammatory and fibrotic processes, but the implication of OGN in cardiac inflammation and the resulting injury upon viral myocarditis is unknown.Methods and resultsThis study uncovered a previously unidentified 72-kDa variant of OGN that is predominant in cardiac human and mouse samples of viral myocarditis. Its absence in mice significantly decreased cardiac inflammation and injury in Coxsackievirus-B3-induced myocarditis. It also delayed mortality in lipopolysaccharide-induced endotoxemia going along with a reduced systemic production of pro-inflammatory cytokines. This 72-kDa OGN is expressed in the cell membrane of circulating and resident cardiac macrophages and neutrophils. Co-immunoprecipitation and OGN siRNA experiments revealed that this 72-kDa variant activates the toll-like receptor-4 (TLR4) with a concomitant increase in IL-6, TNF-α, IL-1β, and IL-12 expression. This immune cell activation by OGN occurred via MyD88 and increased phosphorylation of c-jun. Finally, the 72-kDa chondroitin sulfate is the result of O-linked glycosylation of the 32-kDa protein core of OGN. In contrast, the 34-kDa dermatan sulfate-OGN, involved in collagen cross linking, was also the result of O-linked glycosylation.ConclusionThe current study discovered a novel 72-kDa chondroitin sulfate-OGN that is specific for innate immune cells. This variant is able to bind and activate TLR4. The absence of OGN decreases cytokine production by both circulating and cardiac leukocytes upon (systemic) LPS exposure, and reduces cardiac inflammation and injury in viral myocarditis.
Scientific Reports | 2017
Mandy M. F. Steinbusch; M.M. Caron; Don A. M. Surtel; Franziska Friedrich; Ekkehart Lausch; Ger J. M. Pruijn; Wouter Verhesen; Blanche Schroen; Lodewijk W. van Rhijn; Bernhard Zabel; Tim J. M. Welting
Mutations in the RMRP-gene, encoding the lncRNA component of the RNase MRP complex, are the origin of cartilage-hair hypoplasia. Cartilage-hair hypoplasia is associated with severe dwarfism caused by impaired skeletal development. However, it is not clear why mutations in RMRP RNA lead to skeletal dysplasia. Since chondrogenic differentiation of the growth plate is required for development of long bones, we hypothesized that RMRP RNA plays a pivotal role in chondrogenic differentiation. Expression of Rmrp RNA and RNase MRP protein subunits was detected in the murine growth plate and during the course of chondrogenic differentiation of ATDC5 cultures, where Rmrp RNA expression was found to be correlated with chondrocyte hypertrophy. Genetic interference with Rmrp RNA expression in ATDC5 cultures caused a deregulation of chondrogenic differentiation, with a prominent impact on hypertrophy and changes in pre-rRNA processing and rRNA levels. Promoter reporter studies showed that Rmrp RNA expression responds to chondrogenic morphogens. Chondrogenic trans-differentiation of cartilage-hair hypoplasia fibroblasts was impaired with a pronounced impact on hypertrophic differentiation. Together, our data show that RMRP RNA expression is regulated during different stages of chondrogenic differentiation and indicate that RMRP RNA may play a pivotal role in chondrocyte hypertrophy, with potential consequences for CHH pathobiology.