Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wpmh Maurice Heemels is active.

Publication


Featured researches published by Wpmh Maurice Heemels.


Automatica | 2001

Brief Equivalence of hybrid dynamical models

Wpmh Maurice Heemels; de B Bart Schutter; Alberto Bemporad

This paper establishes equivalences among five classes of hybrid systems: mixed logical dynamical (MLD) systems, linear complementarity (LC) systems, extended linear complementarity (ELC) systems, piecewise affine (PWA) systems, and max-min-plus-scaling (MMPS) systems. Some of the equivalences are established under (rather mild) additional assumptions. These results are of paramount importance for transferring theoretical properties and tools from one class to another, with the consequence that for the study of a particular hybrid system that belongs to any of these classes, one can choose the most convenient hybrid modeling framework.


International Journal of Control | 2008

Analysis of event-driven controllers for linear systems

Wpmh Maurice Heemels; J.H. Sandee; P.P.J. van den Bosch

Most research in control engineering considers periodic or time-triggered control systems with equidistant sample intervals. However, practical cases abound in which it is of interest to consider event-driven control in which the sampling is event-triggered. Although there are various benefits of using event-driven control like reducing resource utilization (e.g., processor and communication load), their application in practice is hampered by the lack of a system theory for event-driven control systems. To provide a first step in developing an event-driven system theory, this paper considers an event-driven control scheme for perturbed linear systems. The event-driven control scheme triggers the control update only when the (tracking or stabilization) error is large. In this manner, the average processor and/or communication load can be reduced significantly. The analysis in this paper is aimed at the control performance in terms of practical stability (ultimate boundedness). Several examples illustrate the theory.


conference on decision and control | 2012

An introduction to event-triggered and self-triggered control

Wpmh Maurice Heemels; Karl Henrik Johansson; Paulo Tabuada

Recent developments in computer and communication technologies have led to a new type of large-scale resource-constrained wireless embedded control systems. It is desirable in these systems to limit the sensor and control computation and/or communication to instances when the system needs attention. However, classical sampled-data control is based on performing sensing and actuation periodically rather than when the system needs attention. This paper provides an introduction to event- and self-triggered control systems where sensing and actuation is performed when needed. Event-triggered control is reactive and generates sensor sampling and control actuation when, for instance, the plant state deviates more than a certain threshold from a desired value. Self-triggered control, on the other hand, is proactive and computes the next sampling or actuation instance ahead of time. The basics of these control strategies are introduced together with a discussion on the differences between state feedback and output feedback for event-triggered control. It is also shown how event- and self-triggered control can be implemented using existing wireless communication technology. Some applications to wireless control in process industry are discussed as well.


IEEE Transactions on Automatic Control | 2012

Output-Based Event-Triggered Control With Guaranteed

Mcf Tijs Donkers; Wpmh Maurice Heemels

Most event-triggered controllers available nowadays are based on static state-feedback controllers. As in many control applications full state measurements are not available for feedback, it is the objective of this paper to propose event-triggered dynamical output-based controllers. The fact that the controller is based on output feedback instead of state feedback does not allow for straightforward extensions of existing event-triggering mechanisms if a minimum time between two subsequent events has to be guaranteed. Furthermore, since sensor and actuator nodes can be physically distributed, centralized event-triggering mechanisms are often prohibitive and, therefore, we will propose a decentralized event-triggering mechanism. This event-triggering mechanism invokes transmission of the outputs in a node when the difference between the current values of the outputs in the node and their previously transmitted values becomes “large” compared to the current values and an additional threshold. For such event-triggering mechanisms, we will study closed-loop stability and L∞-performance and provide bounds on the minimum time between two subsequent events generated by each node, the so-called inter-event time of a node. This enables us to make tradeoffs between closed-loop performance on the one hand and communication load on the other hand, or even between the communication load of individual nodes. In addition, we will model the event-triggered control system using an impulsive model, which truly describes the behavior of the event-triggered control system. As a result, we will be able to guarantee stability and performance for event-triggered controllers with larger minimum inter-event times than the existing results in the literature. We illustrate the developed theory using three numerical examples.


IEEE Transactions on Automatic Control | 2013

{\cal L}_{\infty}

Wpmh Maurice Heemels; Mcf Tijs Donkers; A.R. Teel

Event-triggered control (ETC) is a control strategy that is especially suited for applications where communication resources are scarce. By updating and communicating sensor and actuator data only when needed for stability or performance purposes, ETC is capable of reducing the amount of communications, while still retaining a satisfactory closed-loop performance. In this paper, an ETC strategy is proposed by striking a balance between conventional periodic sampled-data control and ETC, leading to so-called periodic event-triggered control (PETC). In PETC, the event-triggering condition is verified periodically and at every sampling time it is decided whether or not to compute and to transmit new measurements and new control signals. The periodic character of the triggering conditions leads to various implementation benefits, including a minimum inter-event time of (at least) the sampling interval of the event-triggering condition. The PETC strategies developed in this paper apply to both static state-feedback and dynamical output-based controllers, as well as to both centralized and decentralized (periodic) event-triggering conditions. To analyze the stability and the L2-gain properties of the resulting PETC systems, three different approaches will be presented based on 1) impulsive systems, 2) piecewise linear systems, and 3) perturbed linear systems. Moreover, the advantages and disadvantages of each of the three approaches will be discussed and the developed theory will be illustrated using a numerical example.


IEEE Transactions on Vehicular Technology | 2005

-Gain and Improved and Decentralized Event-Triggering

Mwt Michiel Koot; Jtba John Kessels; de Ag Bram Jager; Wpmh Maurice Heemels; van den Ppj Paul Bosch; M Maarten Steinbuch

In the near future, a significant increase in electric power consumption in vehicles is expected. To limit the associated increase in fuel consumption and exhaust emissions, smart strategies for the generation, storage/retrieval, distribution, and consumption of electric power will be used. Inspired by the research on energy management for hybrid electric vehicles (HEVs), this paper presents an extensive study on controlling the vehicular electric power system to reduce the fuel use and emissions, by generating and storing electrical energy only at the most suitable moments. For this purpose, both off-line optimization methods using knowledge of the driving pattern and on-line implementable ones are developed and tested in a simulation environment. Results show a reduction in fuel use of 2%, even without a prediction of the driving cycle being used. Simultaneously, even larger reductions of the emissions are obtained. The strategies can also be applied to a mild HEV with an integrated starter alternator (ISA), without modifications, or to other types of HEVs with slight changes in the formulation.


IEEE Transactions on Automatic Control | 2011

Periodic Event-Triggered Control for Linear Systems

Mcf Tijs Donkers; Wpmh Maurice Heemels; van de N Nathan Wouw; Laurentiu Hetel

In this paper, we study the stability of networked control systems (NCSs) that are subject to time-varying transmission intervals, time-varying transmission delays, and communication constraints. Communication constraints impose that, per transmission, only one node can access the network and send its information. The order in which nodes send their information is orchestrated by a network protocol, such as, the Round-Robin (RR) and the Try-Once-Discard (TOD) protocol. In this paper, we generalize the mentioned protocols to novel classes of so-called “periodic” and “quadratic” protocols. By focusing on linear plants and controllers, we present a modeling framework for NCSs based on discrete-time switched linear uncertain systems. This framework allows the controller to be given in discrete time as well as in continuous time. To analyze stability of such systems for a range of possible transmission intervals and delays, with a possible nonzero lower bound, we propose a new procedure to obtain a convex overapproximation in the form of a polytopic system with norm-bounded additive uncertainty. We show that this approximation can be made arbitrarily tight in an appropriate sense. Based on this overapproximation, we derive stability results in terms of linear matrix inequalities (LMIs). We illustrate our stability analysis on the benchmark example of a batch reactor and show how this leads to tradeoffs between different protocols, allowable ranges of transmission intervals and delays. In addition, we show that the exploitation of the linearity of the system and controller leads to a significant reduction in conservatism with respect to existing approaches in the literature.


Automatica | 2010

Energy management strategies for vehicular electric power systems

Mbg Marieke Cloosterman; Laurentiu Hetel; van de N Nathan Wouw; Wpmh Maurice Heemels; Jamal Daafouz; H Henk Nijmeijer

This paper presents a discrete-time model for networked control systems (NCSs) that incorporates all network phenomena: time-varying sampling intervals, packet dropouts and time-varying delays that may be both smaller and larger than the sampling interval. Based on this model, constructive LMI conditions for controller synthesis are derived, such that stabilizing state-feedback controllers can be designed. Besides the proposed controller synthesis conditions a comparison is made between the use of parameter-dependent Lyapunov functions and Lyapunov-Krasovskii functions for stability analysis. Several examples illustrate the effectiveness of the developed theory.


conference on decision and control | 2004

Stability Analysis of Networked Control Systems Using a Switched Linear Systems Approach

Aleksandar Lj. Juloski; S Siep Weiland; Wpmh Maurice Heemels

In this paper, we present a novel procedure for the identification of hybrid systems in the class of piecewise ARX systems. The presented method facilitates the use of available a priori knowledge on the system to be identified, but can also be used as a black-box method. We treat the unknown parameters as random variables, described by their probability density functions. The identification problem is posed as the problem of computing the a posteriori probability density function of the model parameters, and subsequently relaxed until a practically implementable method is obtained. A particle filtering method is used for a numerical implementation of the proposed procedure. A modified version of the multicategory robust linear programming classification procedure, which uses the information derived in the previous steps of the identification algorithm, is used for estimating the partition of the piecewise ARX map. The proposed procedure is applied for the identification of a component placement process in pick-and-place machines.


IEEE Transactions on Automatic Control | 2006

Controller synthesis for networked control systems

M Mircea Lazar; Wpmh Maurice Heemels; S Siep Weiland; Alberto Bemporad

In this note, we investigate the stability of hybrid systems in closed-loop with model predictive controllers (MPC). A priori sufficient conditions for Lyapunov asymptotic stability and exponential stability are derived in the terminal cost and constraint set fashion, while allowing for discontinuous system dynamics and discontinuous MPC value functions. For constrained piecewise affine (PWA) systems as prediction models, we present novel techniques for computing a terminal cost and a terminal constraint set that satisfy the developed stabilization conditions. For quadratic MPC costs, these conditions translate into a linear matrix inequality while, for MPC costs based on 1, infin-norms, they are obtained as norm inequalities. New ways for calculating low complexity piecewise polyhedral positively invariant sets for PWA systems are also presented. An example illustrates the developed theory

Collaboration


Dive into the Wpmh Maurice Heemels's collaboration.

Top Co-Authors

Avatar

M Mircea Lazar

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S Siep Weiland

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

van de N Nathan Wouw

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Alberto Bemporad

IMT Institute for Advanced Studies Lucca

View shared research outputs
Top Co-Authors

Avatar

H Henk Nijmeijer

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

D.P. Borgers

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M Maarten Steinbuch

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Mcf Tijs Donkers

Eindhoven University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge