Wuguang Lu
Nanjing University of Chinese Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wuguang Lu.
Journal of Controlled Release | 2015
Huizi Sha; Zhengyun Zou; Kai Xin; Xinyu Bian; Xueting Cai; Wuguang Lu; Jiao Chen; Gang Chen; Leaf Huang; Andrew M. Blair; Peng Cao; Baorui Liu
Human tumors, including gastric cancer, frequently express high levels of epidermal growth factor receptors (EGFRs), which are associated with a poor prognosis. Targeted delivery of anticancer drugs to cancerous tissues shows potential in sparing unaffected tissues. However, it has been a major challenge for drug penetration in solid tumor tissues due to the complicated tumor microenvironment. We have constructed a recombinant protein named anti-EGFR-iRGD consisting of an anti-EGFR VHH (the variable domain from the heavy chain of the antibody) fused to iRGD, a tumor-specific binding peptide with high permeability. Anti-EGFR-iRGD, which targets EGFR and αvβ3, spreads extensively throughout both the multicellular spheroids and the tumor mass. The recombinant protein anti-EGFR-iRGD also exhibited antitumor activity in tumor cell lines, multicellular spheroids, and mice. Moreover, anti-EGFR-iRGD could improve anticancer drugs, such as doxorubicin (DOX), bevacizumab, nanoparticle permeability and efficacy in multicellular spheroids. This study draws attention to the importance of iRGD peptide in the therapeutic approach of anti-EGFR-iRGD. As a consequence, anti-EGFR-iRGD could be a drug candidate for cancer treatment and a useful adjunct of other anticancer drugs.
Scientific Reports | 2016
Qian Zhou; Bin Chen; Xindong Wang; Lixin Wu; Yang Yang; Xiaolan Cheng; Zhengli Hu; Xueting Cai; Jie Yang; Xiaoyan Sun; Wuguang Lu; Huaijiang Yan; Jiao Chen; Juan Ye; Jianping Shen; Peng Cao
Sulforaphane, a naturally occurring compound found in cruciferous vegetables, has been shown to be neuroprotective in several neurological disorders. In this study, we sought to investigate the potential protective effects and associated molecular mechanisms of sulforaphane in an in vivo Parkinson’s disease (PD) model, based on rotenone-mediated neurotoxicity. Our results showed that sulforaphane inhibited rotenone-induced locomotor activity deficiency and dopaminergic neuronal loss. Additionally, sulforaphane treatment inhibited the rotenone-induced reactive oxygen species production, malondialdehyde (MDA) accumulation, and resulted in an increased level of total glutathione and reduced glutathione (GSH): oxidized glutathione (GSSG) in the brain. Western blot analysis illustrated that sulforaphane increased the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), heme oxygenase-1 (HO-1), and NAD(P)H quinone oxidoreductase (NQO1), the latter two of which are anti-oxidative enzymes. Moreover, sulforaphane treatment significantly attenuated rotenone-inhibited mTOR-mediated p70S6K and 4E-BP1 signalling pathway, as well as neuronal apoptosis. In addition, sulforaphane rescued rotenone-inhibited autophagy, as detected by LC3-II. Collectively, these findings demonstrated that sulforaphane exert neuroprotective effect involving Nrf2-dependent reductions in oxidative stress, mTOR-dependent inhibition of neuronal apoptosis, and the restoration of normal autophagy. Sulforaphane appears to be a promising compound with neuroprotective properties that may play an important role in preventing PD.
Bioorganic & Medicinal Chemistry | 2013
Xueting Cai; Jie Yang; Jinpei Zhou; Wuguang Lu; Chunping Hu; Zhenhua Gu; Jiege Huo; Xiaoning Wang; Peng Cao
A series of new scopoletin derivatives were designed and synthesized. Their anti-proliferative effect was initially evaluated against various human cancer cell lines. Among the tested compounds, A1, A2, and D6 showed significant anti-proliferative activities. Angiogenesis was detected by endothelial cell migration assay and tube formation study. The results showed that A1, A2, and D6 inhibited the vascular endothelial growth factor (VEGF)-stimulated proliferation, migration, and tube formation of human umbilical vein endothelial cells in vitro. Moreover, they inhibited the vessel growth in the chorioallantoic membrane in vivo. This inhibition was correlated with a significant decrease in the VEGF-triggered phosphorylated forms of ERK1/2 and Akt. In summary, these findings strongly suggested that these scopoletin derivatives might be structurally novel angiogenesis inhibitors.
Scientific Reports | 2015
Yang Yang; Gang Chen; Xiaolan Cheng; Zhiying Teng; Xueting Cai; Jie Yang; Xiaoyan Sun; Wuguang Lu; Xiaoning Wang; Yuanzhang Yao; Chunping Hu; Peng Cao
Nuclear factor erythroid 2-related factor 2 (Nrf2) has emerged as a therapeutic target in many diseases, because it can induce antioxidant enzymes and other cytoprotective enzymes. Moreover, some Nrf2 activators have strong anti-inflammatory activities. Oxidative stress and inflammation are major components involved in the pathology of diabetic nephropathy. In the present study, we evaluated the Nrf2-dependent anti-oxidative and anti-inflammatory effects of digitoflavone in streptozotocin-induced diabetic nephropathy. The molecular mechanisms of digitoflavone were investigated in vitro using SV40-transformed mouse mesangial cells (SV40-Mes13). For the in vivo experiment, diabetes was induced in Nrf2+/+ and Nrf2−/− mice by STZ injection, and digitoflavone was administered 2 weeks after the STZ injection. Digitoflavone induced Nrf2 activation and decreased oxidative damage, inflammation, TGF-β1 expression, extracellular matrix protein expression, and mesangial cell hyperplasia in SV40-Mes13 cells. Digitoflavone-treated Nrf2+/+ mice, but not Nrf2−/− mice, showed attenuated common metabolic disorder symptoms, improved renal performance, minimized pathological alterations, and decreased oxidative damage, inflammatory gene expression, inflammatory cell infiltration, TGF-β1 expression, and extracellular matrix protein expression. Our results show that the anti-oxidative and anti-inflammatory effects of digitoflavone are mediated by Nrf2 activation and that digitoflavone can be used therapeutically to improve metabolic disorders and relieve renal damage induced by diabetes.
Cancer Research | 2017
Xiaoyan Sun; Wei-Guang Wang; Jiao Chen; Xueting Cai; Jie Yang; Yang Yang; Huaijiang Yan; Xiaolan Cheng; Juan Ye; Wuguang Lu; Chunping Hu; Han-Dong Sun; Jian-Xin Pu; Peng Cao
Aberrant expression of thioredoxin 1 (Trx1) plays an important role in cancer initiation and progression and has gained attention as an anticancer drug target. Here we report that the recently discovered natural diterpenoid isoforretin A (IsoA) significantly inhibits Trx1 activity and mediates anticancer effects in multiple preclinical settings. The inhibitory effect of IsoA was antagonized by free radical scavengers polyethylene glycol-catalase, polyethylene glycol superoxide dismutase, thiol-based antioxidants N-acetylcysteine and glutathione. Mass spectrometry analysis revealed that the mechanism of action was based on direct conjugation of IsoA to the Cys32/Cys35 residues of Trx1. This conjugation event attenuated reversible thiol reduction of Trx1, leading to ROS accumulation and a broader degradation of thiol redox homeostasis in cancer cells. Extending these in vitro findings, we documented that IsoA administration inhibited the growth of HepG2 tumors in a murine xenograft model of hepatocellular carcinoma. Taken together, our findings highlight IsoA as a potent bioactive inhibitor of Trx1 and a candidate anticancer natural product. Cancer Res; 77(4); 926-36. ©2016 AACR.
Scientific Reports | 2015
Zhiying Teng; Xiaolan Cheng; Xueting Cai; Yang Yang; Xiaoyan Sun; Jin-Di Xu; Wuguang Lu; Jiao Chen; Chunping Hu; Qian Zhou; Xiaoning Wang; Song-Lin Li; Peng Cao
Cisplatin is a highly effective anti-cancer chemotherapeutic agent; however, its clinical use is severely limited by serious side effects, of which nephrotoxicity is the most important. In this study, we investigated whether Qiong-Yu-Gao (QYG), a popular traditional Chinese medicinal formula described 840 years ago, exhibits protective effects against cisplatin-induced renal toxicity. Using a mouse model of cisplatin-induced renal dysfunction, we observed that pretreatment with QYG attenuated cisplatin-induced elevations in blood urea nitrogen and creatinine levels, ameliorated renal tubular lesions, reduced apoptosis, and accelerated tubular cell regeneration. Cisplatin-mediated elevations in tumor necrosis factor alpha (TNF-α) mRNA, interleukin-1 beta (IL-1β) mRNA, and cyclooxygenase-2 (COX-2) protein in the kidney were also significantly suppressed by QYG treatment. Furthermore, QYG reduced platinum accumulation in the kidney by decreasing the expression of copper transporter 1 and organic cation transporter 2. An in vivo study using implanted Lewis lung cancer cells revealed that concurrent administration of QYG and cisplatin did not alter the anti-tumor activity of cisplatin. Our findings suggest that the traditional Chinese medicinal formula QYG inhibits cisplatin toxicity by several mechanisms that act simultaneously, without compromising its therapeutic efficacy. Therefore, QYG may be useful in the clinic as a protective agent to prevent cisplatin-induced nephrotoxicity.
Frontiers in Pharmacology | 2017
Xiaolan Cheng; Jiege Huo; Dawei Wang; Xueting Cai; Xiaoyan Sun; Wuguang Lu; Yang Yang; Chunping Hu; Xiaoning Wang; Peng Cao
Oxaliplatin is clinically compelling because of severe peripheral neuropathy. The side effect can result in dosage reductions or even cessation of chemotherapy, and no effective treatments are available. AC591 is a standardized extract of Huangqi Guizhi Wuwu decoction, an herbal formula recorded in “Synopsis of the Golden Chamber” for improving limb numbness and pain. In this study, we investigated whether AC591 could protect against oxaliplatin-induced peripheral neuropathy. To clarify it, a rat model of oxaliplatin-induced peripheral neuropathy was established, and neuroprotective effect of AC591 was studied. Our results showed that pretreatment with AC591 reduced oxaliplatin-induced cold hyperalgesia, mechanical allodynia as well as morphological damage of dorsal root ganglion. Microarray analysis indicated the neuroprotective action of AC591 depended on the modulation of multiple molecular targets and pathways involved in the downregulation of inflammation and immune response. Moreover, AC591 enhanced the antitumor activity of oxaliplatin to some extent in Balb/c mice bearing CT-26 carcinoma cells. The efficacy of AC591 is also investigated in 72 colorectal cancer patients. After four cycles of treatment, the percentage of grades 1–2 neurotoxicity in AC591-treated group (n = 36) was 25%, whereas in the control group the incidence was 55.55% (P < 0.01) (n = 36). No significant differences in the tumor response rate between the two groups were found. These evidences suggested that AC591 can prevent oxaliplatin-induced neuropathy without reducing its antitumor activity, and may be a promising adjuvant to alleviate sensory symptoms in clinical practice.
Scientific Reports | 2016
Yuzheng Huang; Wei Li; Wuguang Lu; Chunrong Xiong; Yang Yang; Huaijiang Yan; Kun Connie Liu; Peng Cao
As one of the three major human pathogens that cause schistosomiasis, Schistosoma japonicum is the only one that is endemic in China. Despite great progress on schistosomiasis control over the past 50 years in China, S. japonicum transmission still occurs in certain endemic regions, which causes significant public health problems and enormous economic losses. During different life stages, parasites are able to survive dramatic osmolality changes between its vector, fresh water, and mammal host. However, the molecular mechanism of parasite osmoregulation remains unknown. To address this challenging question, we report the first cloning of an S. japonicum aquaglyceroporin (SjAQP) from an isolate from Jiangsu province, China. Expressing SjAQP in Xenopus oocytes facilitated the permeation of water, glycerol, and urea. The water permeability of SjAQP was inhibited by 1u2009mM HgCl2, 3u2009mM tetraethylammonium, 1u2009mM ZnCl2, and 1u2009mM CuSO4. SjAQP was constitutively expressed throughout the S. japonicum life cycle, including in the egg, miracidia, cercaria, and adult stages. The highest expression was detected during the infective cercaria stage. Our results suggest that SjAQP plays a role in osmoregulation throughout the S. japonicum life cycle, especially during cercariae transformation, which enables parasites to survive osmotic challenges.
Scientific Reports | 2017
Jiao Chen; Jie Yang; Xianqiang Sun; Zhongming Wang; Xiaolan Cheng; Wuguang Lu; Xueting Cai; Chunping Hu; Xu Shen; Peng Cao
Neomorphic mutation R140Q in the metabolic enzyme isocitrate dehydrogenase 2 (IDH2) is found to be a driver mutation in cancers. Recent studies revealed that allosteric inhibitors could selectively inhibit IDH2/R140Q and induce differentiation of TF-1 erythroleukemia and primary human AML cells. However, the allosteric inhibition mechanism is not very clear. Here, we report the results from computational studies that AGI-6780 binds tightly with the divalent cation binding helices at the homodimer interface and prevents the transition of IDH2/R140Q homodimer to a closed conformation that is required for catalysis, resulting in the decrease ofxa0the binding free energy of NADPHs. If the allosteric inhibitor is removed, the original open catalytic center of IDH2/R140Q will gradually reorganize to a quasi-closed conformation and the enzymatic activity might recover. Unlike IDH2/R140Q, AGI-6780 locks one monomer of the wild-type IDH2 in an inactive open conformation and the other in a half-closed conformation, which can be used to explain the selectivity of AGI-6780. Our results suggest that conformational changes are the primary contributors to the inhibitory potency of the allosteric inhibitor. Our study will also facilitate the understanding of the inhibitory and selective mechanisms of AG-221 (a promising allosteric inhibitor that has been approved by FDA) for mutant IDH2.
Molecular Pain | 2018
Jiaping Ruan; Qinghong Mao; Wuguang Lu; Qing Li; Qun Fu; Xueting Cai; Huaijiang Yan; Jun-Li Cao; Peng Cao; Jiao Chen
Background Several studies have shown that scorpion venom peptide BmK AGAP has an analgesic activity. Our previous study also demonstrated that intraplantar injection of BmK AGAP ameliorates formalin-induced spontaneous nociceptive behavior. However, the effect of intrathecal injection of BmK AGAP on nociceptive processing is poorly understood. Methods We investigated the effects of intrathecal injection of BmK AGAP on spinal nociceptive processing induced by chronic constrictive injury or formalin. Thermal hyperalgesia and mechanical allodynia were measured using radiant heat and the von Frey filaments test. Formalin-induced spontaneous nociceptive behavior was also investigated. C-Fos expression was assessed by immunohistochemistry. Phosphorylated mitogen-activated protein kinase (p-MAPK) expression was monitored by Western blot assay. Results Intrathecal injection of BmK AGAP reduced chronic constrictive injury-induced neuropathic pain behavior and pain from formalin-induced inflammation, accompanied by decreased expression of spinal p-MAPKs and c-Fos protein. The results of combining low doses of different MAPK inhibitor (U0126, SP600125, or SB203580; 0.1 µg for each inhibitor) with a low dose of BmK AGAP (0.2 µg) suggested that BmK AGAP could potentiate the effects of MAPK inhibitors on inflammation-associated pain. Conclusion Our results demonstrate that intrathecal injection of BmK AGAP produces a sensory-specific analgesic effect via a p-MAPK-dependent mechanism.