Wulf-Dieter Moll
IFA Tulln
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wulf-Dieter Moll.
British Journal of Nutrition | 2012
Ana Paula Frederico Rodrigues Loureiro Bracarense; Joelma Lucioli; Bertrand Grenier; Graziela Drociunas Pacheco; Wulf-Dieter Moll; Gerd Schatzmayr; Isabelle P. Oswald
Deoxynivalenol (DON) and fumonisins (FB) are mycotoxins produced by Fusarium species, which naturally co-occur in animal diets. The gastrointestinal tract represents the first barrier met by exogenous food/feed compounds. The purpose of the present study was to investigate the effects of DON and FB, alone and in combination, on some intestinal parameters, including morphology, histology, expression of cytokines and junction proteins. A total of twenty-four 5-week-old piglets were randomly assigned to four different groups, receiving separate diets for 5 weeks: a control diet; a diet contaminated with either DON (3 mg/kg) or FB (6 mg/kg); or both toxins. Chronic ingestion of these contaminated diets induced morphological and histological changes, as shown by the atrophy and fusion of villi, the decreased villi height and cell proliferation in the jejunum, and by the reduced number of goblet cells and lymphocytes. At the end of the experiment, the expression levels of several cytokines were measured by RT-PCR and some of them (TNF-α, IL-1β, IFN-γ, IL-6 and IL-10) were significantly up-regulated in the ileum or the jejunum. In addition, the ingestion of contaminated diets reduced the expression of the adherent junction protein E-cadherin and the tight junction protein occludin in the intestine. When animals were fed with a co-contaminated diet (DON+FB), several types of interactions were observed depending on the parameters and segments assessed: synergistic (immune cells); additive (cytokines and junction protein expression); less than additive (histological lesions and cytokine expression); antagonistic (immune cells and cytokine expression). Taken together, the present data provide strong evidence that chronic ingestion of low doses of mycotoxins alters the intestine, and thus may predispose animals to infections by enteric pathogens.
Toxicology Letters | 2012
Veronika Nagl; Heidi Schwartz; Rudolf Krska; Wulf-Dieter Moll; Siegfried Knasmüller; Mathias Ritzmann; Gerhard Adam; Franz Berthiller
Highlights ► The metabolism of deoxynivalenol-3-glucoside (D3G) in rats was studied. ► Urine and feces were analyzed by a validated LC–MS/MS biomarker method. ► D3G was readily hydrolyzed to deoxynivalenol (DON) during digestion. ► Most D3G was metabolized by the gut microbiota and recovered in feces. ► D3G is of considerably lower toxicological relevance than DON, at least in rats.
Biochemical Pharmacology | 2012
Bertrand Grenier; Ana Paula Frederico Rodrigues Loureiro Bracarense; Heidi Schwartz; Catherine Trumel; Anne-Marie Cossalter; Gerd Schatzmayr; Martine Kolf-Clauw; Wulf-Dieter Moll; Isabelle P. Oswald
Fumonisins are mycotoxins frequently found as natural contaminants in maize, where they are produced by the plant pathogen Fusarium verticillioides. They are toxic to animals and exert their effects through mechanisms involving disruption of sphingolipid metabolism. Fumonisin B₁ (FB₁) is the predominant fumonisin in this family. FB₁ is converted to its hydrolyzed analogs HFB₁, by alkaline cooking (nixtamalization) or through enzymatic degradation. The toxicity of HFB₁ is poorly documented especially at the intestinal level. The objectives of this study were to compare the toxicity of HFB₁ and FB₁ and to assess the ability of these toxins to disrupt sphingolipids biosynthesis. HFB₁ was obtained by a deesterification of FB₁ with a carboxylesterase. Piglets, animals highly sensitive to FB₁, were exposed by gavage for 2 weeks to 2.8 μmol FB₁ or HFB₁/kg body weight/day. FB₁ induced hepatotoxicity as indicated by the lesion score, the level of several biochemical analytes and the expression of inflammatory cytokines. Similarly, FB₁ impaired the morphology of the different segments of the small intestine, reduced villi height and modified intestinal cytokine expression. By contrast, HFB₁ did not trigger hepatotoxicity, did not impair intestinal morphology and slightly modified the intestinal immune response. This low toxicity of HFB₁ correlates with a weak alteration of the sphinganine/sphingosine ratio in the liver and in the plasma. Taken together, these data demonstrate that HFB₁ does not cause intestinal or hepatic toxicity in the sensitive pig model and only slightly disrupts sphingolipids metabolism. This finding suggests that conversion to HFB₁ could be a good strategy to reduce FB₁ exposure.
Molecular Nutrition & Food Research | 2011
Bertrand Grenier; Ana‐Paula Loureiro‐Bracarense; Joelma Lucioli; Graziela Drociunas Pacheco; Anne-Marie Cossalter; Wulf-Dieter Moll; Gerd Schatzmayr; Isabelle P. Oswald
SCOPE Deoxynivalenol (DON) and fumonisins (FB) are the most frequently encountered mycotoxins produced by Fusarium species and most commonly co-occur in animal diets. These mycotoxins were studied for their toxicity in piglets on several parameters including plasma biochemistry, organ histopathology and immune response. METHODS AND RESULTS Twenty-four 5-wk-old animals were randomly assigned to four different groups, receiving separate diets for 5 wk, a control diet, a diet contaminated with either DON (3 mg/kg) or FB (6 mg/kg) or both toxins. At days 4 and 16 of the trial, the animals were subcutaneously immunized with ovalbumin to assess their specific immune response. The different diets did not affect animal performance and had minimal effect on hematological and biochemical blood parameters. By contrast, DON and FB induced histopathological lesions in the liver, the lungs and the kidneys of exposed animals. The liver was significantly more affected when the two mycotoxins were present simultaneously. The contaminated diets also altered the specific immune response upon vaccination as measured by reduced anti-ovalbumin IgG level in the plasma and reduced lymphocyte proliferation upon antigenic stimulation. Because cytokines play a key role in immunity, the expression levels of IL-8, IL-1β, IL-6 and macrophage inflammatory protein-1β were measured by RT-PCR at the end of the experiment. The expression of these four cytokines was significantly decreased in the spleen of piglets exposed to multi-contaminated diet. CONCLUSION Taken together, our data indicate that ingestion of multi-contaminated diet induces greater histopathological lesions and higher immune suppression than ingestion of mono-contaminated diets.
Journal of Biotechnology | 2010
Stefan Heinl; Doris Hartinger; Michaela Thamhesl; Elisavet Vekiru; Rudolf Krska; Gerd Schatzmayr; Wulf-Dieter Moll; Reingard Grabherr
Detoxification of the mycotoxin fumonisin B(1) comprises at least two enzymatic steps, an initial deesterification reaction, followed by deamination of the resulting hydrolyzed fumonisin B(1). In this study, two genes that are responsible for degradation of fumonisin B(1) by the bacterium Sphingopyxis sp. MTA144 were identified within a gene cluster, assumed to be associated with fumonisin degradation. The first gene encodes a protein which shows similarity to carboxylesterases, type B. The second gene encodes a polypeptide homologous to aminotransferases, class III. The two genes were isolated and expressed heterologously. The effect of the recombinant enzymes on fumonisin B(1) and hydrolyzed fumonisin B(1) was determined. The recombinant carboxylesterase was shown to catalyze the deesterification of fumonisin B(1) to hydrolyzed fumonisin B(1). The heterologously expressed aminotransferase was shown to deaminate hydrolyzed fumonisin B(1) in the presence of pyruvate and pyridoxal phosphate. We propose that the consecutive action of these two enzymes is sufficient for fumonisin B(1) detoxification. The results of this work provide a basis for the development of an enzymatic detoxification process for fumonisin B(1) in food and animal feed, especially under oxygen limited conditions, as they are found, e.g. in ensilaged forage or in the intestinal tract of animals.
Scientific Reports | 2016
Alix Pierron; Sabria Mimoun; Leticia S. Murate; Nicolas Loiseau; Yannick Lippi; Ana Paula Frederico Rodrigues Loureiro Bracarense; Gerd Schatzmayr; Jian Wei He; Ting Zhou; Wulf-Dieter Moll; Isabelle P. Oswald
Bacteria are able to de-epoxidize or epimerize deoxynivalenol (DON), a mycotoxin, to deepoxy-deoxynivalenol (deepoxy-DON or DOM-1) or 3-epi-deoxynivalenol (3-epi-DON), respectively. Using different approaches, the intestinal toxicity of 3 molecules was compared and the molecular basis for the reduced toxicity investigated. In human intestinal epithelial cells, deepoxy-DON and 3-epi-DON were not cytotoxic, did not change the oxygen consumption or impair the barrier function. In intestinal explants, exposure for 4 hours to 10 μM DON induced intestinal lesions not seen in explants treated with deepoxy-DON and 3-epi-DON. A pan-genomic transcriptomic analysis was performed on intestinal explants. 747 probes, representing 323 genes, were differentially expressed, between DON-treated and control explants. By contrast, no differentially expressed genes were observed between control, deepoxy-DON and 3-epi-DON treated explants. Both DON and its biotransformation products were able to fit into the pockets of the A-site of the ribosome peptidyl transferase center. DON forms three hydrogen bonds with the A site and activates MAPKinases (mitogen-activated protein kinases). By contrast deepoxy-DON and 3-epi-DON only form two hydrogen bonds and do not activate MAPKinases. Our data demonstrate that bacterial de-epoxidation or epimerization of DON altered their interaction with the ribosome, leading to an absence of MAPKinase activation and a reduced toxicity.
Food and Chemical Toxicology | 2015
Irene Hahn; Veronika Nagl; Heidi E. Schwartz-Zimmermann; Elisabeth Varga; Christiane Schwarz; Veronika Slavik; Nicole Reisinger; Alexandra Malachová; Martina Cirlini; Silvia Generotti; Chiara Dall'Asta; Rudolf Krska; Wulf-Dieter Moll; Franz Berthiller
Fumonisin B1 (FB1) is a Fusarium mycotoxin frequently occurring in maize-based food and feed. Alkaline processing like nixtamalisation of maize generates partially and fully hydrolysed FB1 (pHFB1 and HFB1) and thermal treatment in the presence of reducing sugars leads to formation of N-(1-deoxy-D-fructos-1-yl) fumonisin B1 (NDF). The toxicity of these metabolites, in particular their effect on the sphingolipid metabolism, is either unknown or discussed controversially. We produced high purity FB1, pHFB1a+b, HFB1 and NDF and fed them to male Sprague Dawley rats for three weeks. Once a week, urine and faeces samples were collected over 24 h and analysed for fumonisin metabolites as well as for the sphinganine (Sa) to sphingosine (So) ratio by validated LC-MS/MS based methods. While the latter was significantly increased in the FB1 positive control group, the Sa/So ratios of the partially and fully hydrolysed fumonisins were indifferent from the negative control group. Although NDF was partly cleaved during digestion, the liberated amounts of FB1 did not raise the Sa/So ratio. These results show that the investigated alkaline and thermal processing products of FB1 were, at the tested concentrations, non-toxic for rats, and suggest that according food processing can reduce fumonisin toxicity for humans.
Journal of Agricultural and Food Chemistry | 2013
Bertrand Grenier; Ana Paula Frederico Rodrigues Loureiro Bracarense; Heidi Schwartz; Joelma Lucioli; Anne-Marie Cossalter; Wulf-Dieter Moll; Gerd Schatzmayr; Isabelle P. Oswald
Mycotoxin mitigation is of major interest as ingestion of mycotoxins results in poor animal health, decreased productivity, as well as substantial economic losses. A feed additive (FA) consisting of a combination of bacteria (Eubacterium BBSH797) and enzyme (fumonisin esterase FumD) was tested in pigs for its ability to neutralize the effects of mono- and co-contaminated diets with deoxynivalenol (DON) and fumonisins (FB) on hematology, biochemistry, tissue morphology, and immune response. Forty-eight animals, allocated into eight groups, received one of eight diets for 35 days: a control diet, a diet contaminated with either DON (3 mg/kg) or FB (6 mg/kg), or both toxins, and the same four diets with FA. Inclusion of FA restored the circulating number of neutrophils of piglets fed the FB and DON + FB diets. Similarly, FA counteracted the minor changes observed on plasma concentrations of albumin and creatinine. In lung, the lesions induced by the ingestion of FB in mono- and co-contaminated diets were no longer observed after addition of FA in these diets. Lesions recorded in the liver of pigs fed either of the contaminated diets with FA were partly reduced, and the increased hepatocyte proliferation was totally neutralized when FA was present in the co-contaminated diet. After 35 days of exposure, the development of the vaccinal response was significantly improved in animals fed diets supplemented with FA, as shown by results of lymphocyte proliferation, cytokine expression in spleen, and the production of specific Ig. Similarly, in jejunum of animals fed diets with FA, occurrence of lesions and upregulation of pro-inflammatory cytokines were much less obvious. The ameliorative effects provided by FA suggest that this approach would be suitable in the control of DON and FB that commonly co-occur in feed.
Journal of Microbiological Methods | 2008
Shamsozoha Abolmaali; Rudolf Mitterbauer; Oliver Spadiut; Michaela Peruci; Hanna Weindorfer; Doris Lucyshyn; Günther Ellersdorfer; Marc Lemmens; Wulf-Dieter Moll; Gerhard Adam
The aim of this study was to increase the sensitivity of Saccharomyces cerevisiae towards trichothecene toxins, in particular to deoxynivalenol (DON), in order to improve the utility of this yeast as a bioassay indicator organism. We report the construction of a strain with inactivated genes (PDR5, PDR10, PDR15) encoding ABC transporter proteins with specificity for the trichothecene deoxynivalenol, with inactivated AYT1 (encoding a trichothecene-3-O-acetyltransferase), and inactivated UBI4 and UBP6 genes. Inactivation of the stress inducible polyubiquitin gene UBI4 or the ubiquitin protease UBP6 increased DON sensitivity, the inactivation of both genes had a synergistic effect. The resulting pdr5 pdr10 pdr15 ayt1 ubp6 ubi4 mutant strain showed 50% growth inhibition at a DON concentration of 5 mg/l under optimal conditions. The development of a simple two step assay for microbial DON degradation in 96 well microtiter format and its testing with the DON detoxifying bacterium BBSH 797 is reported.
Microbial Cell Factories | 2010
Doris Hartinger; Stefan Heinl; Heidi Schwartz; Reingard Grabherr; Gerd Schatzmayr; Dietmar Haltrich; Wulf-Dieter Moll
BackgroundFumonisin B1 is a cancerogenic mycotoxin produced by Fusarium verticillioides and other fungi. Sphingopyxis sp. MTA144 can degrade fumonisin B1, and a key enzyme in the catabolic pathway is an aminotransferase which removes the C2-amino group from hydrolyzed fumonisin B1. In order to study this aminotransferase with respect to a possible future application in enzymatic fumonisin detoxification, we attempted expression of the corresponding fumI gene in E. coli and purification of the enzyme. Since the aminotransferase initially accumulated in inclusion bodies, we compared the effects of induction level, host strain, expression temperature, solubility enhancers and a fusion partner on enzyme solubility and activity.ResultsWhen expressed from a T7 promoter at 30°C, the aminotransferase accumulated invariably in inclusion bodies in DE3 lysogens of the E. coli strains BL21, HMS174, Rosetta 2, Origami 2, or Rosetta-gami. Omission of the isopropyl-beta-D-thiogalactopyranoside (IPTG) used for induction caused a reduction of expression level, but no enhancement of solubility. Likewise, protein production but not solubility correlated with the IPTG concentration in E. coli Tuner(DE3). Addition of the solubility enhancers betaine and sorbitol or the co-enzyme pyridoxal phosphate showed no effect. Maltose-binding protein, used as an N-terminal fusion partner, promoted solubility at 30°C or less, but not at 37°C. Low enzyme activity and subsequent aggregation in the course of purification and cleavage indicated that the soluble fusion protein contained incorrectly folded aminotransferase. Expression in E. coli ArcticExpress(DE3), which co-expresses two cold-adapted chaperonins, at 11°C finally resulted in production of appreciable amounts of active enzyme. Since His tag-mediated affinity purification from this strain was hindered by co-elution of chaperonin, two steps of chromatography with optimized imidazole concentration in the binding buffer were performed to obtain 1.45 mg of apparently homogeneous aminotransferase per liter of expression culture.ConclusionsWe found that only reduction of temperature, but not reduction of expression level or fusion to maltose-binding protein helped to produce correctly folded, active aminotransferase FumI in E. coli. Our results may provide a starting point for soluble expression of related aminotransferases or other aggregation-prone proteins in E. coli.
Collaboration
Dive into the Wulf-Dieter Moll's collaboration.
Ana Paula Frederico Rodrigues Loureiro Bracarense
Universidade Estadual de Londrina
View shared research outputs