Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wuquan Deng is active.

Publication


Featured researches published by Wuquan Deng.


Diabetes Research and Clinical Practice | 2011

Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: A double-blind, randomized, controlled trial

Debin Lu; Bing Chen; Ziwen Liang; Wuquan Deng; Youzhao Jiang; Shufa Li; Jing Xu; Qinan Wu; Zhonghui Zhang; Bing Xie; Sihao Chen

AIMS To identify better cells for the treatment of diabetic critical limb ischemia (CLI) and foot ulcer in a pilot trial. METHODS Under ordinary treatment, the limbs of 41 type 2 diabetic patients with bilateral CLI and foot ulcer were injected intramuscularly with bone marrow mesenchymal stem cells (BMMSCs), bone marrow-derived mononuclear cells (BMMNCs), or normal saline (NS). RESULTS The ulcer healing rate of the BMMSC group was significantly higher than that of BMMNCs at 6 weeks after injection (P=0.022), and reached 100% 4 weeks earlier than BMMNC group. After 24 weeks of follow-up, the improvements in limb perfusion induced by the BMMSCs transplantation were more significant than those by BMMNCs in terms of painless walking time (P=0.040), ankle-brachial index (ABI) (P=0.017), transcutaneous oxygen pressure (TcO(2)) (P=0.001), and magnetic resonance angiography (MRA) analysis (P=0.018). There was no significant difference between the groups in terms of pain relief and amputation and there was no serious adverse events related to both cell injections. CONCLUSIONS BMMSCs therapy may be better tolerated and more effective than BMMNCs for increasing lower limb perfusion and promoting foot ulcer healing in diabetic patients with CLI.


Diabetes | 2012

Peroxisome Proliferator–Activated Receptor-γ Coactivator-1α (PGC-1α) Enhances Engraftment and Angiogenesis of Mesenchymal Stem Cells in Diabetic Hindlimb Ischemia

Debin Lu; Ling Zhang; Haihui Wang; Yan Zhang; Jian Liu; Jing Xu; Ziwen Liang; Wuquan Deng; Youzhao Jiang; Qinan Wu; Shufa Li; Zhihua Ai; Yuxu Zhong; Ying Ying; Hongyan Liu; Feng Gao; Zhonghui Zhang; Bing Chen

To examine whether the peroxisome proliferator–activated receptor-γ coactivator-1α (PGC-1α), a key regulator linking angiogenesis and metabolism, could enhance the engraftment and angiogenesis of mesenchymal stem cells (MSCs) in diabetic hindlimb ischemia, we engineered the overexpression of PGC-1α within MSCs using an adenoviral vector encoding green fluorescent protein and PGC-1α, and then tested the survivability and angiogenesis of MSCs in vitro and in vivo. Under the condition of hypoxia concomitant with serum deprivation, the overexpression of PGC-1α in MSCs resulted in a higher expression level of hypoxia-inducible factor-1α (Hif-1α), a greater ratio of B-cell lymphoma leukemia-2 (Bcl-2)/Bcl-2–associated X protein (Bax), and a lower level of caspase 3 compared with the controls, followed by an increased survival rate and an elevated expression level of several proangiogenic factors. In vivo, the MSCs modified with PGC-1α could significantly increase the blood perfusion and capillary density of ischemic hindlimb of the diabetic rats, which was correlated to an improved survivability of MSCs and an increased level of several proangiogenic factors secreted by MSCs. We identified for the first time that PGC-1α could enhance the engraftment and angiogenesis of MSCs in diabetic hindlimb ischemia.


Mediators of Inflammation | 2016

The SGLT-2 Inhibitor Dapagliflozin Has a Therapeutic Effect on Atherosclerosis in Diabetic ApoE−/− Mice

Weiling Leng; Xinshou Ouyang; Xiaotian Lei; Mingxia Wu; Liu Chen; Qinan Wu; Wuquan Deng; Ziwen Liang

Background. Our study aimed to observe the effect of sodium glucose cotransporter-2 (SGLT2) inhibitor dapagliflozin on diabetic atherosclerosis and investigate the subsequent mechanism. Methods. Aortic atherosclerosis was induced in streptozotocin induced diabetic ApoE−/− mice by feeding with high-fat diet, and dapagliflozin was administrated intragastrically for 12 weeks as treatment. Effects of dapagliflozin on indices of glucose and fat metabolism, IL-1β, IL-18, NLRP3 protein levels, and the reactive oxygen species (ROS) were measured. The atherosclerosis was evaluated by oil red O and hematoxylin-eosin staining. The effects of dapagliflozin on the IL-1β production in culturing primary macrophages of wild type and NLRP3−/− knockout mice were investigated for mechanism analyses. Results. Dapagliflozin treatment showed favorable effects on glucose and fat metabolism, partially reversed the formation of atherosclerosis, inhibited macrophage infiltration, and enhanced the stability of lesion. Also, reduced production of IL-1β, IL-18, NLRP3 protein, and mitochondrial ROS in the aortic tissues was detected with dapagliflozin treatment. In vitro, NLRP3 inflammasome was activated by hyperglucose and hyperlipid through ROS pathway. Conclusions. Dapagliflozin may be of therapeutic potential for diabetic atherosclerosis induced by high-fat diet, and these benefits may depend on the inhibitory effect on the secretion of IL-1β by macrophages via the ROS-NLRP3-caspase-1 pathway.


Vaccine | 2013

Identification of novel HLA-A 0201-restricted cytotoxic T lymphocyte epitopes from Zinc Transporter 8.

Shufa Li; Haiying Li; Bing Chen; Debin Lu; Wuquan Deng; Youzhao Jiang; Zhongqi Zhou; Zhao Yang

Numerous evidences demonstrated that type 1 diabetes (T1D) is due to a loss of immune tolerance to islet antigens, and CD8(+) T cells play an important role in the development of T1D. Zinc Transporter 8 (ZnT8) has emerged in recent years as a target of disease-associated autoreactive T cells in human T1D. However, ZnT8-associated CTL specific-peptides have not been identified. In this study, we predicted and identified HLA-A*0201-restricted cytotoxic T lymphocyte (CTL) epitopes derived from ZnT8, and utilized it to immunize HLA-A2.1/Kb transgenic (Tg) mice. The results demonstrated that peptides of ZnT8 containing residues 107-115, 115-123 and 145-153 could elicit specific CTLs in vitro, and induce diabetes in mice. The results suggest that these specific peptides are novel HLA-A*0201-restricted CTL epitopes, and could have therapeutic potential in preventing of T1D disease.


Journal of Clinical Hypertension | 2014

Elevated Serum Uric Acid is Associated With Angiotensinogen in Obese Patients With Untreated Hypertension

Junxia Zhang; Yuping Zhang; Wuquan Deng; Bing Chen

This study investigated the correlation between elevated serum uric acid (SUA) and angiotensinogen in obesity patients with hypertension. A total of 162 obese and 162 nonobese men with hypertension were recruited in this study. Plasma angiotensinogen levels were measured by enzyme‐linked immunosorbent assay. Fasting insulin (FINS) was evaluated by radioimmunoassay. Compared with nonobese patients, obese patients exhibited higher levels of angiotensinogen, FINS, and homeostasis model assessment index‐insulin resistance (HOMA‐IR) (P<.001 for all). Moreover, these indexes significantly increased in obese patients in the highest tertile of SUA when compared with those in the lowest tertile of SUA (P<.001, P=.002, P=.007, respectively). In the obese group, SUA levels were significantly related to angiotensinogen, FINS, and HOMA‐IR, respectively. Furthermore, it was demonstrated that obesity × uric acid was an independent contributor to angiotensinogen (β=0.257, P<.001). In conclusion, elevated SUA is strongly related to angiotensinogen in an obesity‐dependent manner in hypertension.


Diabetology & Metabolic Syndrome | 2014

Serum retinol-binding protein 4 levels are elevated but do not contribute to insulin resistance in newly diagnosed Chinese hypertensive patients.

Wuquan Deng; Yuping Zhang; Yanling Zheng; Youzhao Jiang; Qinan Wu; Ziwen Liang; Gangyi Yang; Bing Chen

BackgroundInsulin resistance (IR) is closely correlated with cardiovascular disease (CVD). Retinol-binding protein 4 (RBP4) is a novel adipokine that modulates the action of insulin in various diseases. This study addressed the relationship between RBP4 and IR in newly diagnosed essential hypertension.MethodsSerum RBP4, anthropometric and metabolic parameters were determined in 267 newly diagnosed essential hypertensive patients not taking antihypertensive medications. The patients along with 64 control (NC) normotensive and lean subjects paired by age and sex were divided into two groups depending on body mass index (BMI), hypertension with obesity (HPO) and hypertension without obesity (HP).ResultsA striking difference was observed in RBP4 levels between the HP and NC groups. Significantly higher levels were noted in the HP group compared with the NC group; slightly, but not significantly, lower levels were observed in the HPO group compared with the HP group. After adjusting for BMI, WC and WHR, a modestly linear relationship was observed between RBP4 levels and SBP (r = 0.377; p = 0.00), DBP (r = 0.288; p = 0.00) and HOMA-β(r = 0.121; p = 0.028). Multiple stepwise regression analysis showed that SBP, WHR and drinking were independently related with serum RBP4 levels.ConclusionsThe results of this study indicated that RBP4 levels were increased in naive hypertensive patients; however, no differences were observed in obese or non-obese hypertensive subjects. Our data suggest for the first time that RBP4 levels are significantly increased but do not contribute to the development of IR in newly diagnosed hypertensive Chinese patients.


Diabetes Research and Clinical Practice | 2014

Decreased A20 mRNA and protein expression in peripheral blood mononuclear cells in patients with type 2 diabetes and latent autoimmune diabetes in adults

Liqing Cheng; Dongmei Zhang; Youzhao Jiang; Wuquan Deng; Qi’nan Wu; Xiaoyan Jiang; Bing Chen

AIMS A20 is a negative regulator of nuclear factor kappa B activation and the central gatekeeper in inflammation and immunity. While its role in type 1 diabetes has been widely studied, its expression level in immune cells from type 2 diabetes (T2D) and latent autoimmune diabetes in adult (LADA) patients remains unclear. This study aimed to clarify whether the expression of A20 is altered in patients with T2D or LADA. METHODS Quantitative real-time polymerase chain reaction and western blotting were utilized to determine the expression of A20 mRNA and protein respectively in peripheral blood mononuclear cells (PBMCs) from patients with T2D (n=36) or LADA (n=17) and sex- and age-matched healthy controls (n=34). RESULTS The mRNA and protein expression of A20 in PBMCs from T2D and LADA patients was significantly decreased compared with healthy controls (P<0.05). Furthermore, A20 mRNA and protein expression was significantly lower in newly diagnosed T2D patients (≤1 year since diagnosis) than in patients with a long T2D duration (>1 year since diagnosis) (P<0.05). CONCLUSIONS Our results suggest that decreased expression of A20 in PBMCs may be involved in the pathogenesis of diabetes, and targeting A20 may offer a potential therapeutic tool in the treatment of diabetes.


Diabetes Research and Clinical Practice | 2014

Transcutaneous oxygen pressure (TcPO2): A novel diagnostic tool for peripheral neuropathy in type 2 diabetes patients

Wuquan Deng; Xiaoying Dong; Yuping Zhang; Youzhao Jiang; Debin Lu; Qinan Wu; Ziwen Liang; Gangyi Yang; Bing Chen

AIMS The assessment of transcutaneous oxygen pressure (TcPO2) may serve as a non-invasive and lower-cost alternative to nerve conduction studies (NCSs) for the diagnosis of diabetic peripheral neuropathy (DPN). The aim of this study was to determine whether the measurement of TcPO2 is useful for evaluating DPN. METHODS We performed a cross-sectional study of 381 consecutive hospitalized diabetic patients classified by clinical examination and NCS as having DPN. Anthropometric and metabolic parameters were assessed. The TcPO2 examination was performed in both supine and sitting positions. RESULTS Three hundred and one patients had DPN. The TcPO2 in both the supine and sitting positions was highest in the Non-DPN group and lower in the confirmed DPN group than the other three groups (p<0.001). The Non-DPN group had the lowest sitting-supine position difference in TcPO2 among the groups (p<0.001). The risk factors strongly associated with DPN included sitting-supine position difference in TcPO2 (OR=4.971, p<0.001), diabetic retinopathy (DR) (odds ratio [OR]=3.794, p=0.002), and HbA1c (OR=1.534, p=0.033). The area under the curve (AUC) of the sitting-supine position difference in TcPO2 was 0.722 and revealed an optimal cut-off point for the identification of DPN (19.5 mmHg) that had a sensitivity of 0.611 and a specificity of 0.738 based on AUC analysis. CONCLUSIONS This large study of diabetic patients confirms that the sitting-supine position difference in TcPO2 is higher in DPN patients than control subjects, indicating that TcPO2 examination is a promising valuable diagnostic tool for DPN.


Journal of Wound Care | 2016

Platelet-rich plasma, bilayered acellular matrix grafting and negative pressure wound therapy in diabetic foot infection

Wuquan Deng; Johnson Boey; Bing Chen; S. Byun; Eric J. Lew; Ziwen Liang; David Armstrong

UNLABELLED Management and treatment of acute severe diabetic foot disease in patients with suboptimal glycaemic control is a critical issue in wound repair. This paper discusses the clinical efficacy of an aggressive surgical intervention combined with targeted use of regenerative medical therapies in limb preservation. Negative pressure wound therapy (NPWT), platelet-rich plasma (PRP), bilayered acellular matrix grafting and split-thickness skin grafting were combined to treat a patient with diabetes, foot necrotising fasciitis and gaseous gangrene. The wound was completely healed. The clinical outcome revealed that a multi-intervention strategy could be effective for large necrotising fasciitis wounds. Early clinical observation, suggests aggresive surgical intervention preserving intact tissue and targeted use of new regenerative technologies can lead to preservation of a limb. DECLARATION OF INTEREST The authors have received no financial support for the material presented in this study outside of the scope of standard patient care reimbursement. This work was supported by the National Natural Science Foundation of China (NO. 81500596) awarded to Dr Wuquan Deng.


Medicine | 2015

PCDH10 Interacts With hTERT and Negatively Regulates Telomerase Activity.

Li-Na Zhou; Xing Hua; Wuquan Deng; Qinan Wu; Hao Mei; Bing Chen

AbstractTelomerase catalyzes telomeric DNA synthesis, an essential process to maintain the length of telomere for continuous cell proliferation and genomic stability. Telomerase is activated in gametes, stem cells, and most tumor cells, and its activity is tightly controlled by a catalytic human telomerase reverse transcriptase (hTERT) subunit and a collection of associated proteins.In the present work, normal human testis tissue was used for the first time to identify proteins involved in the telomerase regulation under normal physiological conditions.Immunoprecipitation was performed using total protein lysates from the normal testis tissue and the proteins of interest were identified by microfluidic high-performance liquid chromatography and tandem mass spectrometry (HPLC-Chip-MS/MS). The regulatory role of PCDH10 in telomerase activity was confirmed by a telomeric repeat amplification protocol (TRAP) assay, and the biological functions of it were characterized by in vitro proliferation, migration, and invasion assays.A new in vivo hTERT interacting protein, protocadherin 10 (PCDH10), was identified. Overexpression of PCDH10 in pancreatic cancer cells impaired telomere elongation by inhibiting telomerase activity while having no obvious effect on hTERT expression at mRNA and protein levels. As a result of this critical function in telomerase regulation, PCDH10 was found to inhibit cell proliferation, migration, and invasion, suggesting a tumor suppressive role of this protein.Our data suggested that PCDH10 played a critical role in cancer cell growth, by negatively regulating telomerase activity, implicating a potential value in future therapeutic development against cancer.

Collaboration


Dive into the Wuquan Deng's collaboration.

Top Co-Authors

Avatar

Bing Chen

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Ziwen Liang

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Qinan Wu

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Youzhao Jiang

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Debin Lu

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Yuping Zhang

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Gangyi Yang

Chongqing Medical University

View shared research outputs
Top Co-Authors

Avatar

Shufa Li

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Johnson Boey

Singapore General Hospital

View shared research outputs
Top Co-Authors

Avatar

David Armstrong

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge