Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wusheng Luo is active.

Publication


Featured researches published by Wusheng Luo.


Circulation Research | 1994

Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation.

Wusheng Luo; Ingrid L. Grupp; Judy M. Harrer; Sathivel Ponniah; Gunter Grupp; John J. Duffy; Thomas Doetschman; Evangelia G. Kranias

Phospholamban is the regulator of the Ca(2+)-ATPase in cardiac sarcoplasmic reticulum (SR), and it has been suggested to be an important determinant in the inotropic responses of the heart to beta-adrenergic stimulation. To determine the role of phospholamban in vivo, the gene coding for this protein was targeted in murine embryonic stem cells, and mice deficient in phospholamban were generated. The phospholamban-deficient mice showed no gross developmental abnormalities but exhibited enhanced myocardial performance without changes in heart rate. The time to peak pressure and the time to half-relaxation were significantly shorter in phospholamban-deficient mice compared with their wild-type homozygous littermates as assessed in work-performing mouse heart preparations under identical venous returns, afterloads, and heart rates. The first derivatives of intraventricular pressure (+/- dP/dt) were also significantly elevated, and this was associated with an increase in the affinity of the SR Ca(2+)-ATPase for Ca2+ in the phospholamban-deficient hearts. Baseline levels of these parameters in the phospholamban-deficient hearts were equal to those observed in hearts of wild-type littermates maximally stimulated with the beta-agonist isoproterenol. These findings indicate that phospholamban acts as a critical repressor of basal myocardial contractility and may be the key phosphoprotein in mediating the hearts contractile responses to beta-adrenergic agonists.


Nature Medicine | 1998

Fibroblast growth factor 2 control of vascular tone

Ming Zhou; Roy L. Sutliff; Richard J. Paul; John N. Lorenz; James B. Hoying; Christian C. Haudenschild; Moying Yin; J. Douglas Coffin; Ling Kong; Evangelia G. Kranias; Wusheng Luo; Gregory P. Boivin; John J. Duffy; Sharon A. Pawlowski; Thomas Doetschman

Vascular tone control is essential in blood pressure regulation, shock, ischemia-reperfusion, inflammation, vessel injury/repair, wound healing, temperature regulation, digestion, exercise physiology, and metabolism. Here we show that a well-known growth factor, FCF2, long thought to be involved in many developmental and homeostatic processes, including growth of the tissue layers of vessel walls, functions in vascular tone control. Fgf2 knockout mice are morphologically normal and display decreased vascular smooth muscle contractility, low blood pressure and thrombocytosis. Following intra-arterial mechanical injury, FGF2-deficient vessels undergo a normal hyperplastic response. These results force us to reconsider the function of FGF2 in vascular development and homeostasis in terms of vascular tone control.


Circulation Research | 1996

Phospholamban Gene Dosage Effects in the Mammalian Heart

Wusheng Luo; Beata M. Wolska; Ingrid L. Grupp; Judy M. Harrer; Kobra Haghighi; Donald G. Ferguson; Jay P. Slack; Gunter Grupp; Thomas Doetschman; R. John Solaro; Evangelia G. Kranias

Phospholamban ablation has been shown to result in significant increases in cardiac contractile parameters and loss of beta-adrenergic stimulation. To determine whether partial reduction in phospholamban levels is also associated with enhancement of cardiac performance and to further examine the sensitivity of the contractile system to alterations in phospholamban levels, hearts from wild-type, phospholamban-heterozygous, and phospholamban-deficient mice were studied in parallel at the subcellular, cellular, and organ levels. The phospholamban-heterozygous mice expressed reduced cardiac phospholamban mRNA and protein levels (40 +/- 5%) compared with wild type mice. The reduced phospholamban levels were associated with significant decreases in the EC50 of the sarcoplasmic reticulum Ca2+ pump for CA2+ and increases in the contractile parameters of isolated myocytes and beating hearts. The relative phospholamban levels among wild-type, phospholamban-heterozygous, and phospholamban-deficient mouse hearts correlated well with the (1) EC50 of the Ca(2+)-ATPase for Ca2+ in sarcoplasmic reticulum, (2) rates of relaxation and contraction in isolated cardiac myocytes, and (3) rates of relaxation and intact beating hearts. These findings suggest that physiological and pathological changes in the levels of phospholamban will result in parallel changes in sarcoplasmic reticulum function and cardiac contraction.


Circulation Research | 1996

Compensatory Mechanisms Associated With the Hyperdynamic Function of Phospholamban-Deficient Mouse Hearts

Guoxiang Chu; Wusheng Luo; Jay P. Slack; Carola Tilgmann; Wendy E. Sweet; Matthias Spindler; Kurt W. Saupe; Gregory P. Boivin; Christine S. Moravec; Mohammed A. Matlib; Ingrid L. Grupp; Joanne S. Ingwall; Evangelia G. Kranias

Phospholamban ablation is associated with significant increases in the sarcoplasmic reticulum Ca(2+)-ATPase activity and the basal cardiac contractile parameters. To determine whether the observed phenotype is due to loss of phospholamban alone or to accompanying compensatory mechanisms, hearts from phospholamban-deficient and age-matched wild-type mice were characterized in parallel. There were no morphological alterations detected at the light microscope level. Assessment of the protein levels of the cardiac sarcoplasmic reticulum Ca(2+)-ATPase, calsequestrin, myosin, actin, troponin I, and troponin T revealed no significant differences between phospholamban-deficient and wild-type hearts. However, the ryanodine receptor protein levels were significantly decreased (25%) upon ablation of phospholamban, probably in an attempt to regulate the release of Ca2+ from the sarcoplasmic reticulum, which had a significantly higher diastolic Ca2+ content in phospholamban-deficient compared with wild-type hearts (16.0 +/- 2.2 versus 8.6 +/- 1.0 mmol Ca2+/kg dry wt, respectively). The increases in Ca2+ content were specific to junctional sarcoplasmic reticulum stores, as there were no alterations in the Ca2+ content of the mitochondria or A band. Assessment of ATP levels revealed no alterations, although oxygen consumption increased (1.6-fold) to meet the increased ATP utilization in the hyperdynamic phospholamban-deficient hearts. The increases in oxygen consumption were associated with increases (2.2-fold) in the active fraction of the mitochondrial pyruvate dehydrogenase, suggesting increased tricarboxylic acid cycle turnover and ATP synthesis. 31P nuclear magnetic resonance studies demonstrated decreases in phosphocreatine levels and increases in ADP and AMP levels in phospholamban-deficient compared with wild-type hearts. However, the creatine kinase activity and the creatine kinase reaction velocity were not different between phospholamban-deficient and wild-type hearts. These findings indicate that ablation of phospholamban is associated with downregulation of the ryanodine receptor to compensate for the increased Ca2+ content in the sarcoplasmic reticulum store and metabolic adaptations to establish a new energetic steady state to meet the increased ATP demand in the hyperdynamic phospholamban-deficient hearts.


Circulation Research | 1997

Targeted Ablation of the Phospholamban Gene Is Associated With a Marked Decrease in Sensitivity in Aortic Smooth Muscle

Jane Lalli; Judy M. Harrer; Wusheng Luo; Evangelia G. Kranias; Richard J. Paul

Phospholamban (PLB) is a protein associated with the Ca(2+)-ATPase of the sarcoplasmic reticulum (SR) in cardiac, slow-twitch skeletal, and smooth muscle. PLB inhibits the SR Ca(2+)-ATPase in cardiac muscle; this inhibition is relieved on phosphorylation. The role of PLB in smooth muscle contractility is less clear. To elucidate the role of PLB in vascular smooth muscle contractility in vivo, we used a model in which the PLB gene was targeted in murine embryonic stem cells, generating mice deficient in PLB (PLB-). The PLB- mice exhibited no gross developmental abnormalities, but marked changes in aortic contractility were observed. The time course of force development with phenylephrine stimulation was faster in the PLB- aorta, suggesting changes in SR Ca2+ release. No differences were observed for KCl contractures between tissue types for either maximum forces observed or time course of force production; relaxation was faster in 7 of 11 arteries, but this trend did not attain statistical significance. The cumulative concentration-isometric force relations for the PLB- aorta were to the right of the wild-type for both KCl and phenylephrine stimulation, indicating a less sensitive tissue. To investigate whether the observed changes were related to SR function, we inhibited the SR Ca(2+)-ATPase with cyclopiazonic acid (CPA). CPA treatment resulted in a leftward shift of the concentration-isometric force relations for both aorta types, as expected after removal of a major Ca2+ uptake system. Most interestingly, the differences between PLB and wild-type aorta were abolished by SR inhibition. Our results suggest that PLB is a regulator of the SR Ca2+ pump in mouse aorta and plays a regulatory role in both KCl-induced and receptor-mediated contractility in vascular smooth muscle.


Circulation Research | 1992

Mouse phospholamban gene expression during development in vivo and in vitro.

John R. Ganim; Wusheng Luo; Sathivel Ponniah; Ingrid L. Grupp; Hae Won Kim; Donald G. Ferguson; Vivek J. Kadambi; Jon C. Neumann; Thomas Doetschman; Evangelia G. Kranias

To establish a murine model that may allow for definition of the precise role of phospholamban in myocardial contractility through selective perturbations in the phospholamban gene, we initiated studies on the role of phospholamban in the murine heart. Intact beating hearts were perfused in the absence or presence of isoproterenol, and quantitative measurements of cardiac performance were obtained. Isoproterenol stimulation was associated with increases in the affinity of the sarcoplasmic reticulum Ca2+ pump for Ca2+ that were due to phospholamban phosphorylation. To assess the regulation of phospholamban gene expression during murine development, Northern blot and polymerase chain reaction analyses were used. Phospholamban mRNA was first detected in murine embryos on the ninth day of development (the time when the cardiac tube begins to contract). In murine embryoid bodies, which have been shown to recapitulate several aspects of cardiogenesis, phospholamban mRNA was detected on the seventh day (the time when spontaneous contractions are first observed). Only those embryoid bodies that exhibited contractions expressed phospholamban transcripts, and these were accompanied by expression of the protein, as revealed by immunofluorescence microscopy. Sequence analysis of the cDNA encoding phospholamban in embryoid bodies indicated complete homology to that in adult hearts. The deduced amino acid sequence of murine phospholamban was identical to rabbit cardiac phospholamban but different from dog cardiac and human cardiac phospholamban by one amino acid. These data suggest that phospholamban, the regulator of the Ca(2+)-ATPase in cardiac sarcoplasmic reticulum, is present very early in murine cardiogenesis in utero and in vitro, and this may constitute an important determinant for proper development of myocardial contractility.


Circulation Research | 1997

Monomeric Phospholamban Overexpression in Transgenic Mouse Hearts

Guoxiang Chu; Gerald W. Dorn; Wusheng Luo; Judy M. Harrer; Vivek J. Kadambi; Richard A. Walsh; Evangelia G. Kranias

Phospholamban, a prominent modulator of the sarcoplasmic reticulum (SR) Ca(2+)-ATPase activity and basal contractility in the mammalian heart, has been proposed to form pentamers in native SR membranes. However, the monomeric form of phospholamban, which is associated with mutating Cys41 to Phe41, was shown to be as effective as pentameric phospholamban in inhibiting Ca2+ transport in expression systems. To determine whether this monomeric form of phospholamban is also functional in vivo, we generated transgenic mice with cardiac-specific overexpression of the mutant (Cys41-->Phe41) phospholamban. Quantitative immunoblotting indicated a 2-fold increase in the cardiac phospholamban protein levels compared with wild-type controls, with approximately equal to 50% of phospholamban migrating as monomers and approximately 50% as pentamers upon SDS-PAGE. The mutant-phospholamban transgenic hearts were analyzed in parallel with transgenic hearts overexpressing (2-fold) wild-type phospholamban, which migrated as pentamers upon SDS-PAGE. SR Ca(2+)-uptake assays revealed that the EC50 values for Ca2+ were as follows: 0.32 +/- 0.01 mumol/L in hearts overexpressing monomeric phospholamban, 0.49 +/- 0.05 mumol/L in hearts overexpressing wild-type phospholamban, and 0.26 +/- 0.01 mumol/L in wild-type control mouse hearts. Analysis of cardiomyocyte mechanics and Ca2+ kinetics indicated that the inhibitory effects of mutant-phospholamban overexpression (mt) were less pronounced than those of wild-type phospholamban overexpression (ov) as assessed by depression of the following: (1) shortening fraction (25% mt versus 45% ov), (2) rates of shortening (27% mt versus 48% ov), (3) rates of relengthening (25% mt versus 50% ov) (4) amplitude of the Ca2+ signal (21% mt versus 40% ov), and (5) time for decay of the Ca2+ signal (25% mt versus 106% ov) compared with control (100%) myocytes. The differences in basal cardiac, myocyte mechanics and Ca2+ transients among the animal groups overexpressing monomeric or wild-type phospholamban and wild-type control mice were abolished upon isoproterenol stimulation. These findings suggest that pentameric assembly of phospholamban is important for mediating its optimal regulatory effects on myocardial contractility in vivo.


American Journal of Physiology-heart and Circulatory Physiology | 1999

Phospholamban deficiency does not compromise exercise capacity

Kavin Desai; Eric Schauble; Wusheng Luo; Evangelia G. Kranias; Daniel Bernstein

Deficiency of phospholamban (PLB) results in enhancement of basal murine cardiac function and an attenuated response to β-adrenergic stimulation. To determine whether the absence of PLB also reduces the reserve capacity of the murine cardiovascular system to respond to stress, we evaluated the heart rate (HR), blood pressure, and metabolic responses of PLB-deficient (PLB-/-) mice to graded treadmill exercise (GTE). PLB-/- mice were hypertensive at rest (125 ± 19 vs. 109 ± 16 mmHg, P < 0.05) but had normal tachycardic and hypotensive responses to isoproterenol. The HR response to GTE was normal; however, the hypertension in PLB-/- mice normalized at peak exercise. Their exercise capacities, as measured by duration of exercise and peak oxygen consumption (V˙o 2), were normal. The oxygen pulse (V˙o 2/HR) curve was also normal in PLB-/- mice, suggesting an ability to appropriately increase stroke volume and oxygen extraction during GTE, despite an inability to increase β-adrenergically stimulated cardiac contractility. Thus deficiency of PLB, although resulting in diminished β-adrenergic inotropic reserve, does not compromise cardiac performance during exercise.


Archive | 1995

Cardiac Remodeling by Alterations in Phospholamban Protein Levels

Wusheng Luo; Eva Kiss; Kimberly L. Koss; Ingrid L. Grupp; Judy M. Harrer; W. Keith Jones; István Édes; Evangelia G. Kranias

Heart failure is a low cardiac output syndrome characterized by both systolic and diastolic dysfunction. Hallmarks of cardiac failure include marked ventricular hypertrophy or dilation, decreased velocity of contraction, decreased rate of relaxation, and abnormal cytosolic calcium handling. Alterations in these parameters can be explained by alterations in cardiac sarcoplasmic reticulum (SR) function. The cardiac SR plays a critical role in cardiac excitation-contraction coupling by regulating the rate of myocardial relaxation, which is the rate-limiting step in the cardiac contraction/relaxation cycle [1,2]. The rate and extent of myocardial relaxation is determined by the rate and extent of Ca2+ uptake from the myoplasm into the SR. Thus, the SR functions as the primary regulator of myocardial intracellular Ca2+ levels.


Journal of Biological Chemistry | 2000

A Single Site (Ser16) Phosphorylation in Phospholamban Is Sufficient in Mediating Its Maximal Cardiac Responses to β-Agonists

Guoxiang Chu; James W. Lester; Karen B. Young; Wusheng Luo; Jing Zhai; Evangelia G. Kranias

Collaboration


Dive into the Wusheng Luo's collaboration.

Top Co-Authors

Avatar

Evangelia G. Kranias

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Ingrid L. Grupp

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Judy M. Harrer

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Guoxiang Chu

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Jay P. Slack

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vivek J. Kadambi

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Sathivel Ponniah

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Yoji Sato

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Donald G. Ferguson

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge