Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wyatt L. Du Frane is active.

Publication


Featured researches published by Wyatt L. Du Frane.


Geophysical Research Letters | 2005

Anisotropy of electrical conductivity in dry olivine

Wyatt L. Du Frane; Jeffery J. Roberts; Daniel A. Toffelmier; James A. Tyburczy

[1] The electrical conductivity ({sigma}) was measured for a single crystal of San Carlos olivine (Fo{sub 89.1}) for all three principal orientations over oxygen fugacities 10{sup -7} < fO{sub 2} < 10{sup 1} Pa at 1100, 1200, and 1300 C. Fe-doped Pt electrodes were used in conjunction with a conservative range of fO{sub 2}, T, and time to reduce Fe loss resulting in data that is {approx}0.15 log units higher in conductivity than previous studies. At 1200 C and fO{sub 2} = 10{sup -1} Pa, {sigma}{sub [100]} = 10{sup -2.27} S/m, {sigma}{sub [010]} = 10{sup -2.49} S/m, {sigma}{sub [001]} = 10{sup -2.40} S/m. The dependences of {sigma} on T and fO{sub 2} have been simultaneously modeled with undifferentiated mixed conduction of small polarons and Mg vacancies to obtain steady-state fO{sub 2}-independent activation energies: Ea{sub [100]} = 0.32 eV, Ea{sub [010]} = 0.56 eV, Ea{sub [001]} = 0.71 eV. A single crystal of dry olivine would provide a maximum of {approx}10{sup 0.4} S/m azimuthal {sigma} contrast for T < 1500 C. The anisotropic results are combined to create an isotropic model with Ea = 0.53 eV.


Environmental Science & Technology | 2013

Chemical and Mechanical Properties of Wellbore Cement Altered by CO2-Rich Brine Using a Multianalytical Approach

Harris E. Mason; Wyatt L. Du Frane; Stuart D. C. Walsh; Zurong Dai; Supakit Charnvanichborikarn; Susan A. Carroll

Defining chemical and mechanical alteration of wellbore cement by CO(2)-rich brines is important for predicting the long-term integrity of wellbores in geologic CO(2) environments. We reacted CO(2)-rich brines along a cement-caprock boundary at 60 °C and pCO(2) = 3 MPa using flow-through experiments. The results show that distinct reaction zones form in response to reactions with the brine over the 8-day experiment. Detailed characterization of the crystalline and amorphous phases, and the solution chemistry show that the zones can be modeled as preferential portlandite dissolution in the depleted layer, concurrent calcium silicate hydrate (CSH) alteration to an amorphous zeolite and Ca-carbonate precipitation in the carbonate layer, and carbonate dissolution in the amorphous layer. Chemical reaction altered the mechanical properties of the core lowering the average Youngs moduli in the depleted, carbonate, and amorphous layers to approximately 75, 64, and 34% of the unaltered cement, respectively. The decreased elastic modulus of the altered cement reflects an increase in pore space through mineral dissolution and different moduli of the reaction products.


Rock Mechanics and Rock Engineering | 2013

Permeability of Wellbore-Cement Fractures Following Degradation by Carbonated Brine

Stuart D. C. Walsh; Wyatt L. Du Frane; Harris E. Mason; Susan A. Carroll

Fractures in wellbore cement and along wellbore-cement/host-rock interfaces have been identified as potential leakage pathways from long-term carbon sequestration sites. When exposed to carbon-dioxide-rich brines, the alkaline cement undergoes a series of reactions that form distinctive fronts adjacent to the cement surface. However, quantifying the effect of these reactions on fracture permeability is not solely a question of geochemistry, as the reaction zones also change the cement’s mechanical properties, modifying the fracture geometry as a result.This paper describes how these geochemical and geomechanical processes affect fracture permeability in wellbore cement. These competing influences are discussed in light of data from a core-flood experiment conducted under carbon sequestration conditions: reaction chemistry, fracture permeability evolution over time, and comparative analysis of X-ray tomography of unreacted and reacted cement samples. These results are also compared to predictions by a complementary numerical study that couples geochemical, geomechanical and hydrodynamic simulations to model the formation of reaction fronts within the cement and their effect on fracture permeability.


Scientific Reports | 2017

Hydrogen self-diffusion in single crystal olivine and electrical conductivity of the Earth’s mantle

Davide Novella; Benjamin Jacobsen; Peter K. Weber; James A. Tyburczy; Frederick J. Ryerson; Wyatt L. Du Frane

Nominally anhydrous minerals formed deep in the mantle and transported to the Earth’s surface contain tens to hundreds of ppm wt H2O, providing evidence for the presence of dissolved water in the Earth’s interior. Even at these low concentrations, H2O greatly affects the physico-chemical properties of mantle materials, governing planetary dynamics and evolution. The diffusion of hydrogen (H) controls the transport of H2O in the Earth’s upper mantle, but is not fully understood for olivine ((Mg, Fe)2SiO4) the most abundant mineral in this region. Here we present new hydrogen self-diffusion coefficients in natural olivine single crystals that were determined at upper mantle conditions (2 GPa and 750–900 °C). Hydrogen self-diffusion is highly anisotropic, with values at 900 °C of 10−10.9, 10−12.8 and 10−11.9 m2/s along [100], [010] and [001] directions, respectively. Combined with the Nernst-Einstein relation, these diffusion results constrain the contribution of H to the electrical conductivity of olivine to be σH = 102.12S/m·CH2O·exp−187kJ/mol/(RT). Comparisons between the model presented in this study and magnetotelluric measurements suggest that plausible H2O concentrations in the upper mantle (≤250 ppm wt) can account for high electrical conductivity values (10−2–10−1 S/m) observed in the asthenosphere.


Journal of Geophysical Research | 2015

Electrical properties of methane hydrate + sediment mixtures

Wyatt L. Du Frane; Laura A. Stern; Steven Constable; Karen Weitemeyer; Megan M. Smith; Jeffery J. Roberts

Knowledge of the electrical properties of multicomponent systems with gas hydrate, sediments, and pore water is needed to help relate electromagnetic (EM) measurements to specific gas hydrate concentration and distribution patterns in nature. Toward this goal, we built a pressure cell capable of measuring in situ electrical properties of multicomponent systems such that the effects of individual components and mixing relations can be assessed. We first established the temperature-dependent electrical conductivity (?) of pure, single-phase methane hydrate to be ~5 orders of magnitude lower than seawater, a substantial contrast that can help differentiate hydrate deposits from significantly more conductive water-saturated sediments in EM field surveys. Here we report ? measurements of two-component systems in which methane hydrate is mixed with variable amounts of quartz sand or glass beads. Sand by itself has low ? but is found to increase the overall ? of mixtures with well-connected methane hydrate. Alternatively, the overall ? decreases when sand concentrations are high enough to cause gas hydrate to be poorly connected, indicating that hydrate grains provide the primary conduction path. Our measurements suggest that impurities from sand induce chemical interactions and/or doping effects that result in higher electrical conductivity with lower temperature dependence. These results can be used in the modeling of massive or two-phase gas-hydrate-bearing systems devoid of conductive pore water. Further experiments that include a free water phase are the necessary next steps toward developing complex models relevant to most natural systems.


Rock Mechanics and Rock Engineering | 2016

Numerical and Experimental Studies of Particle Settling in Real Fracture Geometries

Pratanu Roy; Wyatt L. Du Frane; Yuliya Kanarska; Stuart D. C. Walsh

Proppant is a vital component of hydraulic stimulation operations, improving conductivity by maintaining fracture aperture. While correct placement is a necessary part of ensuring that proppant performs efficiently, the transport behavior of proppant in natural rock fractures is poorly understood. In particular, as companies pursue new propping strategies involving new types of proppant, more accurate models of proppant behavior are needed to help guide their deployment. A major difficulty with simulating reservoir-scale proppant behavior is that continuum models traditionally used to represent large-scale slurry behavior loose applicability in fracture geometries. Particle transport models are often based on representative volumes that are at the same scale or larger than fractures found in hydraulic fracturing operations, making them inappropriate for modeling these types of flows. In the absence of a first-principles approach, empirical closure relations are needed. However, even such empirical closure relationships are difficult to derive without an accurate understanding of proppant behavior on the particle level. Thus, there is a need for experiments and simulations capable of probing phenomena at the sub-fracture scale. In this paper, we present results from experimental and numerical studies investigating proppant behavior at the sub-fracture level, in particular, the role of particle dispersion during proppant settling. In the experimental study, three-dimensional printing techniques are used to accurately reproduce the topology of a fractured Marcellus shale sample inside a particle-flow cell. By recreating the surface in clear plastic resin, proppant movement within the fracture can be tracked directly in real time without the need for X-ray imaging. Particle tracking is further enhanced through the use of mixtures of transparent and opaque proppant analogues. The accompanying numerical studies employ a high-fidelity three-dimensional particle-flow model, capable of explicitly representing the particles, the fracture surface and the interstitial fluid flow. Both studies reveal large-scale vortex motion during particle settling. For the most part, this behavior is independent of the fracture topology, instead driven by interactions between the sinking particles and the upwelling interstitial fluid. This motion results in large amounts of particle dispersion, significantly greater than might be expected from traditional slurry models. The competition between the particles and the fluid also results in a redistribution of particles toward the fracture walls, which has significant implications for the transport of proppant along the fracture.


Geochemistry Geophysics Geosystems | 2012

Deuterium-Hydrogen Exchange in Olivine: Implications for Point Defects and Electrical Conductivity

Wyatt L. Du Frane; James A. Tyburczy


International Journal of Greenhouse Gas Control | 2014

Experimental calibration of a numerical model describing the alteration of cement/caprock interfaces by carbonated brine

Stuart D. C. Walsh; Harris E. Mason; Wyatt L. Du Frane; Susan A. Carroll


International Journal of Greenhouse Gas Control | 2014

Mechanical and hydraulic coupling in cement–caprock interfaces exposed to carbonated brine

Stuart D. C. Walsh; Harris E. Mason; Wyatt L. Du Frane; Susan A. Carroll


Physics of the Earth and Planetary Interiors | 2013

Ringwoodite growth rates from olivine with ~75ppmw H2O: Metastable olivine must be nearly anhydrous to exist in the mantle transition zone

Wyatt L. Du Frane; Thomas G. Sharp; Jed L. Mosenfelder; Kurt Leinenweber

Collaboration


Dive into the Wyatt L. Du Frane's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stuart D. C. Walsh

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffery J. Roberts

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Susan A. Carroll

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harris E. Mason

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jed L. Mosenfelder

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Karen Weitemeyer

Scripps Institution of Oceanography

View shared research outputs
Researchain Logo
Decentralizing Knowledge