Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where X. Allen Li is active.

Publication


Featured researches published by X. Allen Li.


International Journal of Radiation Oncology Biology Physics | 2010

Radiation-Associated Liver Injury

Charlie C. Pan; Brian D. Kavanagh; Laura A. Dawson; X. Allen Li; S Das; Moyed Miften; Randall K. Ten Haken

The liver is a critically important organ that has numerous functions including the production of bile, metabolism of ingested nutrients, elimination of many waste products, glycogen storage, and plasma protein synthesis. The liver is often incidentally irradiated during radiation therapy (RT) for tumors in the upper- abdomen, right lower lung, distal esophagus, or during whole abdomen or whole body RT. This article describes the endpoints, time-course, and dose-volume effect of radiation on the liver.


International Journal of Radiation Oncology Biology Physics | 2010

RADIATION DOSE-VOLUME EFFECTS IN THE STOMACH AND SMALL BOWEL

Brian D. Kavanagh; Charlie C. Pan; Laura A. Dawson; S Das; X. Allen Li; Randall K. Ten Haken; Moyed Miften

Published data suggest that the risk of moderately severe (>or=Grade 3) radiation-induced acute small-bowel toxicity can be predicted with a threshold model whereby for a given dose level, D, if the volume receiving that dose or greater (VD) exceeds a threshold quantity, the risk of toxicity escalates. Estimates of VD depend on the means of structure segmenting (e.g., V15 = 120 cc if individual bowel loops are outlined or V45 = 195 cc if entire peritoneal potential space of bowel is outlined). A similar predictive model of acute toxicity is not available for stomach. Late small-bowel/stomach toxicity is likely related to maximum dose and/or volume threshold parameters qualitatively similar to those related to acute toxicity risk. Concurrent chemotherapy has been associated with a higher risk of acute toxicity, and a history of abdominal surgery has been associated with a higher risk of late toxicity.


International Journal of Radiation Oncology Biology Physics | 2003

How low is the α/β ratio for prostate cancer?

Jian Z. Wang; M Guerrero; X. Allen Li

Purpose: It has been suggested recently that the / ratio for human prostate cancer is low (around 1.5 Gy), and much debate on the evidence for such a low value is ongoing. Analyses reported so far ignored the contribution of tumor repopulation. Extremely low values and unrealistic cell numbers of tumor clonogens are found in these studies. In this paper, we present a comprehensive analysis of the updated clinical data to derive a self-consistent set of parameters for the linear-quadratic (LQ) model. Methods and Materials: The generalized LQ model, considering the effects of dose rate, sublethal damage repair, and clonogenic proliferation, was used to analyze the recently reported clinical data for prostate cancer using either external-beam radiotherapy or brachytherapy. Three LQ parameters, , /, and the repair time, were determined based on the clinical finding that the external-beam radiotherapy and the 125 I and 103 Pd permanent implants are biologically equivalent. The tumor control probability model was used also to analyze the clinical data to obtain an independent relationship of / vs. and to estimate clonogenic cell numbers for patients in different risk groups. Results: Based on the analysis of clinical data and a consideration of repopulation effect, we have derived a self-consistent set of LQ parameters for prostate cancer: 0.15 0.04 Gy 1 , / 3.1 0.5 Gy. Our analysis indicates the half-time of sublethal damage repair to be in the range from 0 to 90 min with a best estimate of 16 min. The best estimate of clonogenic cell numbers in prostate tumors is found to range from 10 6 to 10 7 according to the patient risk level. These values are more realistic than those derived previously (only 10 ‐100). Conclusions: The effect of tumor repopulation is not negligible in determining the LQ parameters for prostate cancer, especially for the low-dose-rate permanent implants. Analysis of clinical data for prostate cancer with corrections for damage repair and repopulation effects results in a low / ratio of 3.1 Gy. Unrealistic clonogenic cell numbers and extremely small values of reported in the literature can be resolved by correcting for repopulation effect. The LQ parameters derived presently from the clinical data are consistent with reports of intrinsic radiosensitivity in vitro.


Physics in Medicine and Biology | 2004

Extending the linear-quadratic model for large fraction doses pertinent to stereotactic radiotherapy.

M Guerrero; X. Allen Li

Ongoing clinical trials designed to explore the use of extracranial stereotactic radiosurgery (ESR) for different tumour sites use large doses per fraction (15, 20, 30 Gy or even larger). The question of whether the linear-quadratic (LQ) model is appropriate to describe radiation response for such large fraction doses has been raised and has not been answered definitively. It has been proposed that mechanism-based models, such as the lethal-potentially lethal (LPL) model, could be more appropriate for such large fraction/acute doses. However, such models are not well characterized with clinical data and they are generally not easy to use. The purpose of this work is to modify the LQ model to more accurately describe radiation response for high fraction/acute doses. A new parameter is introduced in the modified LQ (MLQ) model. The new parameter introduced is characterized based both on in vitro cell survival data of several human tumour cell lines and in vivo animal iso-effect curves. The MLQ model produces a better fit to the iso-effect data than the LQ model. For a high single dose irradiation, the prediction of the MLQ is consistent with that from the LPL model. Unlike the LPL model, the MLQ model retains the simplicity of the LQ model and uses the well-characterized alpha and beta parameters. This work indicates that the standard LQ model can lead to erroneous results when used to calculate iso-effects with large fraction doses, such as those used for ESR. We present a solution to this problem.


Medical Physics | 2008

Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM

Indra J. Das; Chee Wai Cheng; Ronald J. Watts; Anders Ahnesjö; J Gibbons; X. Allen Li; J Lowenstein; Raj K. Mitra; William E. Simon; Timothy C. Zhu

For commissioning a linear accelerator for clinical use, medical physicists are faced with many challenges including the need for precision, a variety of testing methods, data validation, the lack of standards, and time constraints. Since commissioning beam data are treated as a reference and ultimately used by treatment planning systems, it is vitally important that the collected data are of the highest quality to avoid dosimetric and patient treatment errors that may subsequently lead to a poor radiation outcome. Beam data commissioning should be performed with appropriate knowledge and proper tools and should be independent of the person collecting the data. To achieve this goal, Task Group 106 (TG-106) of the Therapy Physics Committee of the American Association of Physicists in Medicine was formed to review the practical aspects as well as the physics of linear accelerator commissioning. The report provides guidelines and recommendations on the proper selection of phantoms and detectors, setting up of a phantom for data acquisition (both scanning and no-scanning data), procedures for acquiring specific photon and electron beam parameters and methods to reduce measurement errors (<1%), beam data processing and detector size convolution for accurate profiles. The TG-106 also provides a brief discussion on the emerging trend in Monte Carlo simulation techniques in photon and electron beam commissioning. The procedures described in this report should assist a qualified medical physicist in either measuring a complete set of beam data, or in verifying a subset of data before initial use or for periodic quality assurance measurements. By combining practical experience with theoretical discussion, this document sets a new standard for beam data commissioning.


International Journal of Radiation Oncology Biology Physics | 2007

VARIABILITY OF TARGET AND NORMAL STRUCTURE DELINEATION FOR BREAST CANCER RADIOTHERAPY : AN RTOG MULTI-INSTITUTIONAL AND MULTIOBSERVER STUDY

X. Allen Li; A. Tai; Douglas W. Arthur; Thomas A. Buchholz; Shannon M. MacDonald; Lawrence B. Marks; Jean M. Moran; Lori J. Pierce; Rachel Rabinovitch; Alphonse G. Taghian; Frank A. Vicini; Wendy A. Woodward

PURPOSE To quantify the multi-institutional and multiobserver variability of target and organ-at-risk (OAR) delineation for breast-cancer radiotherapy (RT) and its dosimetric impact as the first step of a Radiation Therapy Oncology Group effort to establish a breast cancer atlas. METHODS AND MATERIALS Nine radiation oncologists specializing in breast RT from eight institutions independently delineated targets (e.g., lumpectomy cavity, boost planning target volume, breast, supraclavicular, axillary and internal mammary nodes, chest wall) and OARs (e.g., heart, lung) on the same CT images of three representative breast cancer patients. Interobserver differences in structure delineation were quantified regarding volume, distance between centers of mass, percent overlap, and average surface distance. Mean, median, and standard deviation for these quantities were calculated for all possible combinations. To assess the impact of these variations on treatment planning, representative dosimetric plans based on observer-specific contours were generated. RESULTS Variability in contouring the targets and OARs between the institutions and observers was substantial. Structure overlaps were as low as 10%, and volume variations had standard deviations up to 60%. The large variability was related both to differences in opinion regarding target and OAR boundaries and approach to incorporation of setup uncertainty and dosimetric limitations in target delineation. These interobserver differences result in substantial variations in dosimetric planning for breast RT. CONCLUSIONS Differences in target and OAR delineation for breast irradiation between institutions/observers appear to be clinically and dosimetrically significant. A systematic consensus is highly desirable, particularly in the era of intensity-modulated and image-guided RT.


International Journal of Radiation Oncology Biology Physics | 2000

Clinical implementation of intensity-modulated arc therapy.

C Yu; X. Allen Li; Lijun Ma; Dong-Jun Chen; S Naqvi; D Shepard; Mehrdad Sarfaraz; Timothy Holmes; Mohan Suntharalingam; Carl M. Mansfield

PURPOSE Intensity-modulated arc therapy (IMAT) is a method for delivering intensity-modulated radiation therapy (IMRT) using rotational beams. During delivery, the field shape, formed by a multileaf collimator (MLC), changes constantly. The objectives of this study were to (1) clinically implement the IMAT technique, and (2) evaluate the dosimetry in comparison with conventional three-dimensional (3D) conformal techniques. METHODS AND MATERIALS Forward planning with a commercial system (RenderPlan 3D, Precision Therapy International, Inc., Norcross, GA) was used for IMAT planning. Arcs were approximated as multiple shaped fields spaced every 5-10 degrees around the patient. The number and ranges of the arcs were chosen manually. Multiple coplanar, superimposing arcs or noncoplanar arcs with or without a wedge were allowed. For comparison, conventional 3D conformal treatment plans were generated with the same commercial forward planning system as for IMAT. Intensity-modulated treatment plans were also created with a commercial inverse planning system (CORVUS, Nomos Corporation). A leaf-sequencing program was developed to generate the dynamic MLC prescriptions. IMAT treatment delivery was accomplished by programming the linear accelerator (linac) to deliver an arc and the MLC to step through a sequence of fields. Both gantry rotation and leaf motion were enslaved to the delivered MUs. Dosimetric accuracy of the entire process was verified with phantoms before IMAT was used clinically. For each IMAT treatment, a dry run was performed to assess the geometric and dosimetric accuracy. Both the central axis dose and dose distributions were measured and compared with predictions by the planning system. RESULTS By the end of May 2001, 50 patients had completed their treatments with the IMAT technique. Two to five arcs were needed to achieve highly conformal dose distributions. The IMAT plans provided better dose uniformity in the target and lower doses to normal structures than 3D conformal plans. The results varied when the comparison was made with fixed gantry IMRT. In general, IMAT plans provided more uniform dose distributions in the target, whereas the inverse-planned fixed gantry treatments had greater flexibility in controlling dose to the critical structures. Because the field sizes and shapes used in the IMAT were similar to those used in conventional treatments, the dosimetric uncertainty was very small. Of the first 32 patients treated, the average difference between the measured and predicted doses was -0.54 +/- 1.72% at isocenter. The 80%-95% isodose contours measured with film dosimetry matched those predicted by the planning system to within 2 mm. The planning time for IMAT was slightly longer than for generating conventional 3D conformal plans. However, because of the need to create phantom plans for the dry run, the overall planning time was doubled. The average time a patient spent on the table for IMAT treatment was similar to conventional treatments. CONCLUSION Initial results demonstrated the feasibility and accuracy of IMAT for achieving highly conformal dose distributions for different sites. If treatment plans can be optimized for IMAT cone beam delivery, we expect IMAT to achieve dose distributions that rival both slice-based and fixed-field IMRT techniques. The efficient delivery with existing linac and MLC makes IMAT a practical choice.


International Journal of Radiation Oncology Biology Physics | 2003

Impact of prolonged fraction delivery times on tumor control: a note of caution for intensity-modulated radiation therapy (IMRT).

Jian Z. Wang; X. Allen Li; W D'Souza; Robert D. Stewart

PURPOSE Intensity-modulated radiation therapy (IMRT) allows greater dose conformity to the tumor target. However, IMRT, especially static delivery, usually requires more time to deliver a dose fraction than conventional external beam radiotherapy (EBRT). The purpose of this work is to explore the potential impact of such prolonged fraction delivery times on treatment outcome. METHODS AND MATERIALS The generalized linear-quadratic (LQ) model, which accounts for sublethal damage repair and clonogen proliferation, was used to calculate the cell-killing efficiency of various simulated and clinical IMRT plans. LQ parameters derived from compiled clinical data for prostate cancer (alpha = 0.15 Gy(-1), alpha/beta = 3.1 Gy, and a 16-min repair half-time) were used to compute changes in the equivalent uniform dose (EUD) and tumor control probability (TCP) due to prolonged delivery time of IMRT as compared with conventional EBRT. EUD and TCP calculations were also evaluated for a wide range of radiosensitivity parameters. The effects of fraction delivery times ranging from 0 to 45 min on cell killing were studied. RESULTS Our calculations indicate that fraction delivery times in the range of 15-45 min may significantly decrease cell killing. For a prescription dose of 81 Gy in 1.8 Gy fractions, the EUD for prostate cancer decreases from 78 Gy for a conventional EBRT to 69 Gy for an IMRT with a fraction delivery time of 30 min. The values of EUD are sensitive to the alpha/beta ratio, the repair half-time, and the fraction delivery time. The instantaneous dose-rate, beam-on time, number of leaf shapes (segments), and leaf-sequencing patterns given the same overall fraction delivery time were found to have negligible effect on cell killing. CONCLUSIONS The total time to deliver a single fraction may have a significant impact on IMRT treatment outcome for tumors with a low alpha/beta ratio and a short repair half-time, such as prostate cancer. These effects, if confirmed by clinical studies, should be considered in designing IMRT treatments.


Medical Physics | 2005

Technical and dosimetric aspects of respiratory gating using a pressure-sensor motion monitoring system

X. Allen Li; C. Stepaniak; Elizabeth Gore

This work introduces a gating technique that uses 4DCT to determine gating parameters and to plan gated treatment, and employs a Siemens linear accelerator to deliver the gated treatment. Because of technology incompatibility, the 4DCT scanner (LightSpeed, GE) and the Siemens accelerator require two different motion-monitoring systems. The motion monitoring system (AZ-773V, Anzai Med.) used for the gated delivery utilizes a pressure sensor to detect the external respiratory motion (pressure change) in real time. Another system (RPM, Varian) used for the 4DCT scanner (LightSpeed, GE) is based on an infrared camera to detect motion of external markers. These two motion monitoring systems (RPM and Anzai systems) were found to correlate well with each other. The depth doses and profile measured for gated delivery (with a duty cycle of 25% or 50%) were found to agree within 1.0% with those measured for ungated delivery, indicating that gating did not significantly alter beam characteristics. The measurement verified also that the MU linearity and beam output remained unchanged (within 0.3%). A practical method of using 4DCT to plan a gated treatment was developed. The duty cycle for either phase or amplitude gating can be determined based on 4DCT with consideration of set-up error and delivery efficiency. The close-loop measurement involving the entire gating process (imaging, planning, and delivery) showed that the measured isodose distributions agreed with those intended, validating the accuracy and reliability of the gating technique. Based these observations, we conclude that the gating technique introduced in this work, integrating Siemens linear accelerator and Anzai pressure sensor device with GE/Varian RPM 4DCT, is reliable and effective, and it can be used clinically to account for respiratory motion during radiation therapy.


International Journal of Radiation Oncology Biology Physics | 2010

Radiation-Associated Kidney Injury

Laura A. Dawson; Brian D. Kavanagh; Arnold C. Paulino; S Das; Moyed Miften; X. Allen Li; Charlie Pan; Randall K. Ten Haken; Timothy E. Schultheiss

The kidneys are the dose-limiting organs for radiotherapy to upper abdominal cancers and during total body irradiation. The incidence of radiotherapy-associated kidney injury is likely underreported owing to its long latency and because the toxicity is often attributed to more common causes of kidney injury. The pathophysiology of radiation injury is poorly understood. Its presentation can be acute and irreversible or subtle, with a gradual progressive dysfunction over years. A variety of dose and volume parameters have been associated with renal toxicity and are reviewed to provide treatment guidelines. The available predictive models are suboptimal and require validation. Mitigation of radiation nephropathy with angiotensin-converting enzyme inhibitors and other compounds has been shown in animal models and, more recently, in patients.

Collaboration


Dive into the X. Allen Li's collaboration.

Top Co-Authors

Avatar

E Ahunbay

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

A. Tai

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Beth Erickson

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C Yu

University of Maryland

View shared research outputs
Top Co-Authors

Avatar

Colleen A. Lawton

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

G Chen

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

X. Sharon Qi

University of California

View shared research outputs
Top Co-Authors

Avatar

M Guerrero

University of Maryland

View shared research outputs
Researchain Logo
Decentralizing Knowledge