X. Delfosse
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by X. Delfosse.
Nature | 2009
David Charbonneau; Zachory K. Berta; J. Irwin; Christopher J. Burke; Philip Nutzman; Lars A. Buchhave; Christophe Lovis; Xavier Bonfils; David W. Latham; S. Udry; Ruth A. Murray-Clay; Matthew J. Holman; Emilio E. Falco; Joshua N. Winn; D. Queloz; F. Pepe; Michel Mayor; X. Delfosse; T. Forveille
A decade ago, the detection of the first transiting extrasolar planet provided a direct constraint on its composition and opened the door to spectroscopic investigations of extrasolar planetary atmospheres. Because such characterization studies are feasible only for transiting systems that are both nearby and for which the planet-to-star radius ratio is relatively large, nearby small stars have been surveyed intensively. Doppler studies and microlensing have uncovered a population of planets with minimum masses of 1.9–10 times the Earth’s mass (M⊕), called super-Earths. The first constraint on the bulk composition of this novel class of planets was afforded by CoRoT-7b (refs 8, 9), but the distance and size of its star preclude atmospheric studies in the foreseeable future. Here we report observations of the transiting planet GJ 1214b, which has a mass of 6.55M⊕ and a radius 2.68 times Earth’s radius (R⊕), indicating that it is intermediate in stature between Earth and the ice giants of the Solar System. We find that the planetary mass and radius are consistent with a composition of primarily water enshrouded by a hydrogen–helium envelope that is only 0.05% of the mass of the planet. The atmosphere is probably escaping hydrodynamically, indicating that it has undergone significant evolution during its history. The star is small and only 13 parsecs away, so the planetary atmosphere is amenable to study with current observatories.
Astronomy and Astrophysics | 2013
Xavier Bonfils; X. Delfosse; S. Udry; T. Forveille; Michel Mayor; C. Perrier; F. Bouchy; Michaël Gillon; Christophe Lovis; F. Pepe; D. Queloz; N. C. Santos; D. Ségransan
Searching for planets around stars with different masses helps us to assess the outcome of planetary formation for different initial conditions. The low-mass M dwarfs are also the most frequent stars in our Galaxy and potentially therefore, the most frequent planet hosts. Aims. We present observations of 102 southern nearby M dwarfs, using a fraction of our guaranteed time on the ESO/HARPS spectrograph. We observed for 460 h and gathered 1965 precise (~1-3 m/s) radial velocities (RVs), spanning the period from Feb. 11, 2003 to Apr. 1, 2009. Methods. For each star observed, we derive a time series and its precision as well as its variability. We apply systematic searches for long-term trends, periodic signals, and Keplerian orbits (from one to four planets). We analyze the subset of stars with detected signals and apply several diagnostics to discriminate whether the observed Doppler shifts are caused by either stellar surface inhomogeneities or the radial pull of orbiting planets. To prepare for the statistical view of our survey, we also compute the limits on possible unseen signals, and derive a first estimate of the frequency of planets orbiting M dwarfs. Results. We recover the planetary signals of 9 planets announced by our group (Gl 176 b, Gl 581 b, c, d & e, Gl 674 b, Gl 433 b, Gl 667C b, and Gl 667C c). We present radial velocities confirming that GJ 849 hosts a Jupiter-mass planet, plus a long-term radial-velocity variation. We also present RVs that precise the planetary mass and period of Gl 832b. We detect long-term RV changes for Gl 367, Gl 680, and Gl 880, which are indicative of yet unknown long-period companions. We identify candidate signals in the radial-velocity time series of 11 other M dwarfs. Spectral diagnostics and/or photometric observations demonstrate however that these signals are most probably caused by stellar surface inhomogeneities. Finally, we find that our survey is sensitive to a few Earth-mass planets for periods up to several hundred days. We derive a first estimate of the occurrence of M-dwarf planets as a function of their minimum mass and orbital period. In particular, we find that giant planets (msini = 100 − 1000 M⊕) have a low frequency (e.g. f ≲ 1% for P = 1 − 10 d and f = 0.02+0.03-0.01 for P = 10 − 100 d), whereas super-Earths (msini = 1 − 10 M⊕) are likely very abundant (f = 0.36+0.25-0.10 for P = 1 − 10 d and f = 0.52+0.50-0.16 for P = 10 − 100 d). We also obtained η⊕ = 0.41+0.54-0.13, which is the frequency of habitable planets orbiting M dwarfs (1 ≤ msini ≤ 10 M⊕). For the first time, η⊕ is a direct measure and not a number extrapolated from the statistics of more massive and/or shorter-period planets.
Monthly Notices of the Royal Astronomical Society | 2010
J. Morin; J.-F. Donati; Pascal Petit; X. Delfosse; T. Forveille; M. Jardine
We present here the final results of the first spectropolarimetric survey of a small sample of active M dwarfs, aimed at providing observational constraints on dynamo action on both sides of the full-convection threshold (spectral type M4). Our two previous studies (Donati et al. 2008b; Morin et al. 2008b) were focused on early and mid M dwarfs. The present paper examines 11 fully convective late M dwarfs (spectral types M5–M8). Tomographic imaging techniques were applied to time-series of circularly polarised profiles of 6 stars, in order to infer their large-scale magnetic topologies. For 3 other stars we could not produce such magnetic maps, because of low variability of the Stokes V signatures, but were able to derive some properties of the magnetic fields. We find 2 distinct categories of magnetic topologies: on the one hand strong axisymmetric dipolar fields (similar to mid M dwarfs), and on the other hand weak fields generally featuring a significant non-axisymmetric component, and sometimes a significant toroidal one. Comparison with unsigned magnetic fluxes demonstrates that the second category of magnetic fields shows less organization (less energy in the large scales), similarly to partly convective early M dwarfs. Stars in both categories have similar stellar parameters, our data do not evidence a separation between these 2 categories in the mass-rotation plane. We also report marginal detection of a large-scale magnetic field on the M8 star VB 10 featuring a significant toroidal axisymmetric component, whereas no field is detectable on VB 8 (M7).
Astronomy and Astrophysics | 2008
G. Hébrard; F. Bouchy; F. Pont; B. Loeillet; M. Rabus; Xavier Bonfils; Claire Moutou; I. Boisse; X. Delfosse; M. Desort; Anne Eggenberger; D. Ehrenreich; T. Forveille; Anne-Marie Lagrange; C. Lovis; Michel Mayor; F. Pepe; C. Perrier; D. Queloz; N. C. Santos; D. Ségransan; S. Udry; A. Vidal-Madjar
The transiting extrasolar planet XO-3b is remarkable, with a high mass and eccentric orbit. These unusual characteristics make it interesting to test whether its orbital plane is parallel to the equator of its host star, as it is observed for other transiting planets. We performed radial velocity measurements of XO-3 with the SOPHIE spectrograph at the 1.93 m telescope of Haute-Provence Observatory during a planetary transit and at other orbital phases. This allowed us to observe the Rossiter-McLaughlin effect and, together with a new analysis of the transit light curve, to refine the parameters of the planet. The unusual shape of the radial velocity anomaly during the transit provides a hint of a nearly transverse Rossiter-McLaughlin effect. The sky-projected angle between the planetary orbital axis and the stellar rotation axis should be λ = 70 ◦ ± 15 ◦ to be compatible with our observations. This suggests that some close-in planets might result from gravitational interaction between planets and/or stars rather than migration due to interaction with the accretion disk. This surprising result requires confirmation by additional observations, especially at lower airmass, to fully exclude the possibility that the signal is due to systematic effects.
Astronomy and Astrophysics | 2009
Brice-Olivier Demory; D. Ségransan; Thierry Forveille; D. Queloz; J.-L. Beuzit; X. Delfosse; E. Di Folco; P. Kervella; J.-B. Le Bouquin; C. Perrier; M. Benisty; G. Duvert; K.-H. Hofmann; B. Lopez; Romain G. Petrov
We measured the radii of 7 low and very low-mass stars using long baseline interferometry with the VLTI interferometer and its VINCI and AMBER near-infrared recombiners. We use these new data, together with literature measurements, to examine the luminosityradius and mass-radius relations for K and M dwarfs. The precision of the new interferometric radii now competes with what can be obtained for double-lined eclipsing binaries. Interferometry provides access to much less active stars, as well as to stars with much better measured distances and luminosities, and therefore complements the information obtained from eclipsing systems. The radii of magnetically quiet late-K to M dwarfs match the predictions of stellar evolution models very well, providing direct confirmation that magnetic activity explains the discrepancy that was recently found for magnetically active eclipsing systems. The radii of the early K dwarfs are reproduced well for a mixing length parameter that approaches the solar value, as qualitatively expected.
Astronomy and Astrophysics | 2007
Brice-Olivier Demory; M. Gillon; Travis S. Barman; X. Bonfils; Michel Mayor; Tsevi Mazeh; D. Queloz; S. Udry; F. Bouchy; X. Delfosse; T. Forveille; F. Mallmann; F. Pepe; C. Perrier
We present Spitzer Space Telescope infrared photometry of a secondary eclipse of the hot Neptune GJ 436 b. The observations were obtained using the 8-µm band of the InfraRed Array Camera (IRAC). The data spanning the predicted time of secondary eclipse show a clear flux decrement with the expected shape and duration. The observed eclipse depth of 0.58 mmag allows us to estimate a blackbody brightness temperature of Tp = 717 ± 35 K at 8 µm. We compare this infrared flux measurement to a model of the planetary thermal emission, and show that this model reproduces properly the observed flux decrement. The timing of the secondary eclipse confirms the non-zero orbital eccentricity of the planet, while also increasing its precision (e = 0.14 ± 0.01). Additional new spectroscopic and photometric observations allow us to estimate the rotational period of the star and to assess the potential presence of another planet.
Astronomy and Astrophysics | 2012
D. Ehrenreich; V. Bourrier; Xavier Bonfils; A. Lecavelier des Etangs; G. Hébrard; David K. Sing; P. J. Wheatley; A. Vidal-Madjar; X. Delfosse; S. Udry; T. Forveille; C. Moutou
The naked-eye star 55 Cancri hosts a planetary system with five known planets, including a hot super-Earth (55 Cnc e) extremely close to its star and a farther out giant planet (55 Cnc b), found in milder irradiation conditions with respect to other known hot Jupiters. This system raises important questions on the evolution of atmospheres for close-in exoplanets, and the dependence with planetary mass and irradiation. These questions can be addressed by Lyman- transit observations of the extended hydrogen planetary atmospheres, complemented by contemporaneous measurements of the stellar X-ray flux. In fact, planet “e” has been detected in transit, suggesting the system is seen nearly edge-on. Yet, planet “b” has not been observed in transit so far. Here, we report on Hubble Space Telescope STIS Ly and Chandra ACIS-S X-ray observations of 55 Cnc. These simultaneous observations cover two transits of 55 Cnc e and two inferior conjunctions of 55 Cnc b. They reveal the star as a bright Ly target and a variable X-ray source. While no significant signal is detected during the transits of 55 Cnc e, we detect a surprising Ly absorption of 7:5 1:8% (4.2 ) at inferior conjunctions of 55 Cnc b. The absorption is only detected over the range of Doppler velocities where the stellar radiation repels hydrogen atoms towards the observer. We calculate a false-alarm probability of 4.4%, which takes the a-priori unknown transit parameters into account. This result suggests the possibility that 55 Cnc b has an extended upper Hi atmosphere, which undergoes partial transits when the planet grazes the stellar disc. If confirmed, it would show that planets cooler than hot Jupiters can also have extended atmospheres.
Nature | 2015
Zachory K. Berta-Thompson; J. Irwin; David Charbonneau; Elisabeth R. Newton; Jason A. Dittmann; N. Astudillo-Defru; Xavier Bonfils; Michaël Gillon; Emmanuel Jehin; A. A. Stark; Brian Stalder; F. Bouchy; X. Delfosse; T. Forveille; Christophe Lovis; Michel Mayor; V. Neves; F. Pepe; N. C. Santos; S. Udry; A. Wünsche
M-dwarf stars—hydrogen-burning stars that are smaller than 60 per cent of the size of the Sun—are the most common class of star in our Galaxy and outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per star. The nearest such planets known to transit their star are 39 parsecs away, too distant for detailed follow-up observations to measure the planetary masses or to study their atmospheres. Here we report observations of GJ 1132b, a planet with a size of 1.2 Earth radii that is transiting a small star 12 parsecs away. Our Doppler mass measurement of GJ 1132b yields a density consistent with an Earth-like bulk composition, similar to the compositions of the six known exoplanets with masses less than six times that of the Earth and precisely measured densities. Receiving 19 times more stellar radiation than the Earth, the planet is too hot to be habitable but is cool enough to support a substantial atmosphere, one that has probably been considerably depleted of hydrogen. Because the host star is nearby and only 21 per cent the radius of the Sun, existing and upcoming telescopes will be able to observe the composition and dynamics of the planetary atmosphere.
Astronomy and Astrophysics | 2012
Xavier Bonfils; Michaël Gillon; S. Udry; D. Armstrong; F. Bouchy; X. Delfosse; T. Forveille; A. Fumel; Emmanuel Jehin; Monika Lendl; Christophe Lovis; Michel Mayor; J. McCormac; V. Neves; F. Pepe; C. Perrier; D. Pollaco; D. Queloz; N. C. Santos
We report on the discovery of GJ 3470 b, a transiting hot Uranus of mass mp = 14.0 ± 1.8 M⊕, radius Rp = 4.2 ± 0.6 R⊕ and period P = 3.3371 ± 0.0002 day. Its host star is a nearby (d = 25.2 ± 2.9 pc) M1.5 dwarf of mass M⋆ = 0.54 ± 0.07 M⊙ and radius R⋆ = 0.50 ± 0.06 R⊙. The detection was made during a radial-velocity campaign with Harps that focused on the search for short-period planets orbiting M dwarfs. Once the planet was discovered and the transit-search window narrowed to about 10% of an orbital period, a photometric search started with Trappist and quickly detected the ingress of the planet. Additional observations with Trappist, EulerCam and Nites definitely confirmed the transiting nature of GJ 3470b and allowed the determination of its true mass and radius. The star’s visible or infrared brightness (Vmag = 12.3, Kmag = 8.0), together with a large eclipse depth D = 0.57 ± 0.05%, ranks GJ 3470 b among the most suitable planets for follow-up characterizations.
Astronomy and Astrophysics | 2011
J. Gomes da Silva; N. C. Santos; Xavier Bonfils; X. Delfosse; T. Forveille; S. Udry
Context. The search for extra-solar planets similar to Earth is becoming a reality, but as the level of the measured radial-velocity reaches the sub-ms −1 , stellar intrinsic sources of noise capable of hiding the signal of these planets from scrutiny become more important. Aims. Other stars are known to have magnetic cycles similar to that of the Sun. The relationship between these activity variations and the observed radial-velocity is still not satisfactorily understood. Following our previous work, which studied the correlation between activity cycles and long-term velocity variations for K dwarfs, we now expand it to the lower end of the main sequence. In this first paper our aim is to assess the long-term activity variations in the low end of the main sequence, having in mind a planetary search perspective. Methods. We used a sample of 30 M0‐M5.5 stars from the HARPS M-dwarf planet search program with a median timespan of observations of 5.2 years. We computed chromospheric activity indicators based on the Ca ii Ha nd K, Hα ,H ei D3, and Na i D1 and D2 lines. All data were binned to average out undesired effects such as rotationally modulated atmospheric inhomogeneities. We searched for long-term variability of each index and determined the correlations between them. Results. While the S CaII ,H α ,a nd Nai indices showed significant variability for a fraction of our stellar sample (39%, 33%, and 37%, respectively), only 10% of our stars presented significant variability in the He i index. We therefore conclude that this index is a poor activity indicator at least for this type of stars. Although the Hα shows good correlation with S CaII for the most active stars, the correlation is lost when the activity level decreases. This result appears to indicate that the Ca ii−Hα correlation is dependent on the activity level of the star. The Na i lines correlate very well with the S CaII index for the stars with low activity levels we used, and are thus a good chromospheric activity proxy for early-M dwarfs. We therefore strongly recommend the use of the Nai activity index because the signal-to-noise ratio in the sodium lines spectral region is always higher than for the calcium lines.