Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where X. George Xu is active.

Publication


Featured researches published by X. George Xu.


Physics in Medicine and Biology | 2008

A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction

X. George Xu; B Bednarz; Harald Paganetti

It has been long known that patients treated with ionizing radiation carry a risk of developing a second cancer in their lifetimes. Factors contributing to the recently renewed concern about the second cancer include improved cancer survival rate, younger patient population as well as emerging treatment modalities such as intensity-modulated radiation treatment (IMRT) and proton therapy that can potentially elevate secondary exposures to healthy tissues distant from the target volume. In the past 30 years, external-beam treatment technologies have evolved significantly, and a large amount of data exist but appear to be difficult to comprehend and compare. This review article aims to provide readers with an understanding of the principles and methods related to scattered doses in radiation therapy by summarizing a large collection of dosimetry and clinical studies. Basic concepts and terminology are introduced at the beginning. That is followed by a comprehensive review of dosimetry studies for external-beam treatment modalities including classical radiation therapy, 3D-conformal x-ray therapy, intensity-modulated x-ray therapy (IMRT and tomotherapy) and proton therapy. Selected clinical data on second cancer induction among radiotherapy patients are also covered. Problems in past studies and controversial issues are discussed. The needs for future studies are presented at the end.


Physics in Medicine and Biology | 2007

A boundary-representation method for designing whole-body radiation dosimetry models: pregnant females at the ends of three gestational periods--RPI-P3, -P6 and -P9.

X. George Xu; Valery Taranenko; Juying Zhang; C Shi

Fetuses are extremely radiosensitive and the protection of pregnant females against ionizing radiation is of particular interest in many health and medical physics applications. Existing models of pregnant females relied on simplified anatomical shapes or partial-body images of low resolutions. This paper reviews two general types of solid geometry modeling: constructive solid geometry (CSG) and boundary representation (BREP). It presents in detail a project to adopt the BREP modeling approach to systematically design whole-body radiation dosimetry models: a pregnant female and her fetus at the ends of three gestational periods of 3, 6 and 9 months. Based on previously published CT images of a 7-month pregnant female, the VIP-Man model and mesh organ models, this new set of pregnant female models was constructed using 3D surface modeling technologies instead of voxels. The organ masses were adjusted to agree with the reference data provided by the International Commission on Radiological Protection (ICRP) and previously published papers within 0.5%. The models were then voxelized for the purpose of performing dose calculations in identically implemented EGS4 and MCNPX Monte Carlo codes. The agreements of the fetal doses obtained from these two codes for this set of models were found to be within 2% for the majority of the external photon irradiation geometries of AP, PA, LAT, ROT and ISO at various energies. It is concluded that the so-called RPI-P3, RPI-P6 and RPI-P9 models have been reliably defined for Monte Carlo calculations. The paper also discusses the needs for future research and the possibility for the BREP method to become a major tool in the anatomical modeling for radiation dosimetry.


Physics in Medicine and Biology | 2005

Simulation of organ-specific patient effective dose due to secondary neutrons in proton radiation treatment.

H Jiang; Brian Wang; X. George Xu; Herman D. Suit; Harald Paganetti

Cancer patients undergoing radiation treatment are exposed to high doses to the target (tumour), intermediate doses to adjacent tissues and low doses from scattered radiation to all parts of the body. In the case of proton therapy, secondary neutrons generated in the accelerator head and inside the patient reach many areas in the patient body. Due to the improved efficacy of management of cancer patients, the number of long term survivors post-radiation treatment is increasing substantially. This results in concern about the risk of radiation-induced cancer appearing at late post-treatment times. This paper presents a case study to determine the effective dose from secondary neutrons in patients undergoing proton treatment. A whole-body patient model, VIP-Man, was employed as the patient model. The geometry dataset generated from studies made on VIP-Man was implemented into the GEANT4 Monte Carlo code. Two proton treatment plans for tumours in the lung and paranasal sinus were simulated. The organ doses and ICRP-60 radiation and tissue weighting factors were used to calculate the effective dose. Results show whole body effective doses for the two proton plans of 0.162 Sv and 0.0266 Sv, respectively, to which the major contributor is due to neutrons from the proton treatment nozzle. There is a substantial difference among organs depending on the treatment site.


Physics in Medicine and Biology | 2009

RPI-AM and RPI-AF, a pair of mesh-based, size-adjustable adult male and female computational phantoms using ICRP-89 parameters and their calculations for organ doses from monoenergetic photon beams

Juying Zhang; Yong Hum Na; Peter F. Caracappa; X. George Xu

This paper describes the development of a pair of adult male and adult female computational phantoms that are compatible with anatomical parameters for the 50th percentile population as specified by the International Commission on Radiological Protection (ICRP). The phantoms were designed entirely using polygonal mesh surfaces--a Boundary REPresentation (BREP) geometry that affords the ability to efficiently deform the shape and size of individual organs, as well as the body posture. A set of surface mesh models, from Anatomium 3D P1 V2.0, including 140 organs (out of 500 available) was adopted to supply the basic anatomical representation at the organ level. The organ masses were carefully adjusted to agree within 0.5% relative error with the reference values provided in the ICRP Publication 89. The finalized phantoms have been designated the RPI adult male (RPI-AM) and adult female (RPI-AF) phantoms. For the purposes of organ dose calculations using the MCNPX Monte Carlo code, these phantoms were subsequently converted to voxel formats. Monoenergetic photons between 10 keV and 10 MeV in six standard external photon source geometries were considered in this study: four parallel beams (anterior-posterior, posterior-anterior, left lateral and right lateral), one rotational and one isotropic. The results are tabulated as fluence-to-organ-absorbed-dose conversion coefficients and fluence-to-effective-dose conversion coefficients and compared against those derived from the ICRP computational phantoms, REX and REGINA. A general agreement was found for the effective dose from these two sets of phantoms for photon energies greater than about 300 keV. However, for low-energy photons and certain individual organs, the absorbed doses exhibit profound differences due to specific anatomical features. For example, the position of the arms affects the dose to the lung by more than 20% below 300 keV in the lateral source directions, and the vertical position of the testes affects the dose by more than 80% below 150 keV in the PA source direction. The deformability and adjustability of organs and posture in the RPI adult phantoms may prove useful not only for average workers or patients for radiation protection purposes, but also in studies involving anatomical and posture variability that is important in future radiation protection dosimetry.


Physics in Medicine and Biology | 2008

Assessment of organ-specific neutron equivalent doses in proton therapy using computational whole-body age-dependent voxel phantoms

Christina Zacharatou Jarlskog; Choonik Lee; Wesley E. Bolch; X. George Xu; Harald Paganetti

Proton beams used for radiotherapy will produce neutrons when interacting with matter. The purpose of this study was to quantify the equivalent dose to tissue due to secondary neutrons in pediatric and adult patients treated by proton therapy for brain lesions. Assessment of the equivalent dose to organs away from the target requires whole-body geometrical information. Furthermore, because the patient geometry depends on age at exposure, age-dependent representations are also needed. We implemented age-dependent phantoms into our proton Monte Carlo dose calculation environment. We considered eight typical radiation fields, two of which had been previously used to treat pediatric patients. The other six fields were additionally considered to allow a systematic study of equivalent doses as a function of field parameters. For all phantoms and all fields, we simulated organ-specific equivalent neutron doses and analyzed for each organ (1) the equivalent dose due to neutrons as a function of distance to the target; (2) the equivalent dose due to neutrons as a function of patient age; (3) the equivalent dose due to neutrons as a function of field parameters; and (4) the ratio of contributions to secondary dose from the treatment head versus the contribution from the patients body tissues. This work reports organ-specific equivalent neutron doses for up to 48 organs in a patient. We demonstrate quantitatively how organ equivalent doses for adult and pediatric patients vary as a function of patients age, organ and field parameters. Neutron doses increase with increasing range and modulation width but decrease with field size (as defined by the aperture). We analyzed the ratio of neutron dose contributions from the patient and from the treatment head, and found that neutron-equivalent doses fall off rapidly as a function of distance from the target, in agreement with experimental data. It appears that for the fields used in this study, the neutron dose lateral to the field is smaller than the reported scattered photon doses in a typical intensity-modulated photon treatment. Most importantly, our study shows that neutron doses to specific organs depend considerably on the patients age and body stature. The younger the patient, the higher the dose deposited due to neutrons. Given the fact that the risk also increases with decreasing patient age, this factor needs to be taken into account when treating pediatric patients of very young ages and/or of small body size. The neutron dose from a course of proton therapy treatment (assuming 70 Gy in 30 fractions) could potentially (depending on patients age, organ, treatment site and area of CT scan) be equivalent to up to approximately 30 CT scans.


Medical Physics | 2004

Development of a 30-week-pregnant female tomographic model from computed tomography (CT) images for Monte Carlo organ dose calculations.

Chengyu Shi; X. George Xu

Assessment of radiation dose and risk to a pregnant woman and her fetus is an important task in radiation protection. Although tomographic models for male and female patients of different ages have been developed using medical images, such models for pregnant women had not been developed to date. This paper reports the construction of a partial-body model of a pregnant woman from a set of computed tomography (CT) images. The patient was 30 weeks into pregnancy, and the CT scan covered the portion of the body from above liver to below pubic symphysis in 70 slices. The thickness for each slice is 7 mm, and the image resolution is 512x512 pixels in a 48 cm x 48 cm field; thus, the voxel size is 6.15 mm3. The images were segmented to identify 34 major internal organs and tissues considered sensitive to radiation. Even though the masses are noticeably different from other models, the three-dimensional visualization verified the segmentation and its suitability for Monte Carlo calculations. The model has been implemented into a Monte Carlo code, EGS4-VLSI (very large segmented images), for the calculations of radiation dose to a pregnant woman. The specific absorbed fraction (SAF) results for internal photons were compared with those from a stylized model. Small and large differences were found, and the differences can be explained by mass differences and by the relative geometry differences between the source and the target organs. The research provides the radiation dosimetry community with the first voxelized tomographic model of a pregnant woman, opening the door to future dosimetry studies.


Medical Physics | 2004

Monte Carlo modeling of a High‐Sensitivity MOSFET dosimeter for low‐ and medium‐energy photon sources

Brian Wang; X. George Xu

Metal-oxide-semiconductor field effect transistor (MOSFET) dosimeters are increasingly utilized in radiation therapy and diagnostic radiology. While it is difficult to characterize the dosimeter responses for monoenergetic sources by experiments, this paper reports a detailed Monte Carlo simulation model of the High-Sensitivity MOSFET dosimeter using Monte Carlo N-Particle (MCNP) 4C. A dose estimator method was used to calculate the dose in the extremely thin sensitive volume. Efforts were made to validate the MCNP model using three experiments: (1) comparison of the simulated dose with the measurement of a Cs-137 source, (2) comparison of the simulated dose with analytical values, and (3) comparison of the simulated energy dependence with theoretical values. Our simulation results show that the MOSFET dosimeter has a maximum response at about 40 keV of photon energy. The energy dependence curve is also found to agree with the predicted value from theory within statistical uncertainties. The angular dependence study shows that the MOSFET dosimeter has a higher response (about 8%) when photons come from the epoxy side, compared with the kapton side for the Cs-137 source.


Radiation Protection Dosimetry | 2008

Assessment of patient organ doses and effective doses using the VIP-Man adult male phantom for selected cone-beam CT imaging procedures during image guided radiation therapy

J Gu; B Bednarz; X. George Xu; S Jiang

A Monte Carlo based computational procedure for determining organ doses and effective doses has been described for two procedures used in newly developed image-guided radiation treatment: kilovoltage cone-beam computed tomography (kV CBCT) and mega-voltage computed tomography (MV CBCT). A whole-body patient computational phantom, VIP-Man phantom, is employed for Monte Carlo dose calculations. Results indicate that the thyroid dose is always the highest in head and neck (H&N) scan for both kV and MV CBCT, and the bladder dose is the highest in prostate scan for both kV and MV CBCT. For the VIP-Man phantom, it has been found that the effective dose for kV CBCT (assuming a total exposure of 1350 mAs) is approximately 9.5 mSv for the two anatomical sites, whereas the effective dose for MV CBCT (assuming a total of 6 monitor unit) ranges from 5.10 mSv for the H&N case to 8.39 mSv for the prostate scan. The estimated whole-body effective doses allow different imaging procedures to be compared and evaluated.


Medical Physics | 2010

A comparative study on the risk of second primary cancers in out-of-field organs associated with radiotherapy of localized prostate carcinoma using Monte Carlo-based accelerator and patient models

B Bednarz; Basit S. Athar; X. George Xu

PURPOSE A physicians decision regarding an ideal treatment approach (i.e., radiation, surgery, and/or hormonal) for prostate carcinoma is traditionally based on a variety of metrics. One of these metrics is the risk of radiation-induced second primary cancer following radiation treatments. The aim of this study was to investigate the significance of second cancer risks in out-of-field organs from 3D-CRT and IMRT treatments of prostate carcinoma compared to baseline cancer risks in these organs. METHODS Monte Carlo simulations were performed using a detailed medical linear accelerator model and an anatomically realistic adult male whole-body phantom. A four-field box treatment, a four-field box treatment plus a six-field boost, and a seven-field IMRT treatment were simulated. Using BEIR VII risk models, the age-dependent lifetime attributable risks to various organs outside the primary beam with a known predilection for cancer were calculated using organ-averaged equivalent doses. RESULTS The four-field box treatment had the lowest treatment-related second primary cancer risks to organs outside the primary beam ranging from 7.3 x 10(-9) to 2.54 x 10(-5)%/MU depending on the patients age at exposure and second primary cancer site. The risks to organs outside the primary beam from the four-field box and six-field boost and the seven-field IMRT were nearly equivalent. The risks from the four-field box and six-field boost ranged from 1.39 x 10(-8) to 1.80 x 10(-5)%/MU, and from the seven-field IMRT ranged from 1.60 x 10(-9) to 1.35 x 10(-5)%/MU. The second cancer risks in all organs considered from each plan were below the baseline risks. CONCLUSIONS The treatment-related second cancer risks in organs outside the primary beam due to 3D-CRT and IMRT is small. New risk assessment techniques need to be investigated to address the concern of radiation-induced second cancers from prostate treatments, particularly focusing on risks to organs inside the primary beam.


The Journal of Nuclear Medicine | 2012

RADAR reference adult, pediatric, and pregnant female phantom series for internal and external dosimetry.

Michael G. Stabin; X. George Xu; Mary Ann Emmons; W. Paul Segars; Chengyu Shi; Michael J. Fernald

A new generation of reference computational phantoms, based on image-based models tied to the reference masses defined by the International Commission on Radiological Protection (ICRP) for dose calculations, is presented. Methods: Anatomic models based on nonuniform rational b-spline modeling techniques were used to define reference male and female adults, 15-y-olds, 10-y-olds, 5-y-olds, 1-y-olds, newborns, and pregnant women at 3 stages of gestation, using the defined reference organ masses in ICRP publication 89. Absorbed fractions and specific absorbed fractions for internal emitters were derived using standard Monte Carlo radiation transport simulation codes. Results: Differences were notable between many pairs of organs in specific absorbed fractions because of the improved realism of the models, with adjacent organs usually closer and sometimes touching. Final estimates of absorbed dose for radiopharmaceuticals, for example, were only slightly different overall, as many of the differences were small and most pronounced at low radiation energies. Some new important organs were defined (salivary glands, prostate, eyes, and esophagus), and the identity of a few gastrointestinal tract organs changed. Conclusion: A new generation of reference models for standardized internal and external dose calculations has been defined. The models will be implemented in standardized software for internal dose calculations and be used to produce new standardized dose estimates for radiopharmaceuticals and other applications.

Collaboration


Dive into the X. George Xu's collaboration.

Top Co-Authors

Avatar

B Bednarz

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Tianyu Liu

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Peter F. Caracappa

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Wei Ji

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A Ding

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Yiming Gao

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juying Zhang

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Lin Su

Rensselaer Polytechnic Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge