Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where X. Julia Xu is active.

Publication


Featured researches published by X. Julia Xu.


American Journal of Physiology-endocrinology and Metabolism | 2010

AMPK and SIRT1: a long-standing partnership?

Neil B. Ruderman; X. Julia Xu; Lauren Nelson; José M. Cacicedo; Asish K. Saha; Fan Lan; Yasuo Ido

AMP-activated protein kinase (AMPK) and the histone/protein deacetylase SIRT1 are fuel-sensing molecules that have coexisted in cells throughout evolution. When a cells energy state is diminished, AMPK activation restores energy balance by stimulating catabolic processes that generate ATP and downregulating anabolic processes that consume ATP but are not acutely needed for survival. SIRT1 in turn is best known historically for producing genetic changes that mediate the increase in longevity caused by calorie restriction. Although the two molecules have been studied intensively for many years, only recently has it become apparent that they have similar effects on diverse processes such as cellular fuel metabolism, inflammation, and mitochondrial function. In this review we will examine the evidence that these similarities occur because AMPK and SIRT1 both regulate each other and share many common target molecules. In addition, we will discuss the clinical relevance of these interactions and in particular the possibility that their dysregulation predisposes to disorders such as type 2 diabetes and atherosclerotic cardiovascular disease and is a target for their therapy.


Diabetes | 2010

Downregulation of AMPK Accompanies Leucine- and Glucose-Induced Increases in Protein Synthesis and Insulin Resistance in Rat Skeletal Muscle

Asish K. Saha; X. Julia Xu; Ebony Lawson; Rosangela Deoliveira; Amanda E. Brandon; Edward W. Kraegen; Neil B. Ruderman

OBJECTIVE Branched-chain amino acids, such as leucine and glucose, stimulate protein synthesis and increase the phosphorylation and activity of the mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase (p70S6K). We examined in skeletal muscle whether the effects of leucine and glucose on these parameters and on insulin resistance are mediated by the fuel-sensing enzyme AMP-activated protein kinase (AMPK). RESEARCH DESIGN AND METHODS Rat extensor digitorum longus (EDL) muscle was incubated with different concentrations of leucine and glucose with or without AMPK activators. Muscle obtained from glucose-infused rats was also used as a model. RESULTS In the EDL, incubation with 100 or 200 μmol/l leucine versus no added leucine suppressed the activity of the α2 isoform of AMPK by 50 and 70%, respectively, and caused concentration-dependent increases in protein synthesis and mTOR and p70S6K phosphorylation. Very similar changes were observed in EDL incubated with 5.5 or 25 mmol/l versus no added glucose and in muscle of rats infused with glucose in vivo. Incubation of the EDL with the higher concentrations of both leucine and glucose also caused insulin resistance, reflected by a decrease in insulin-stimulated Akt phosphorylation. Coincubation with the AMPK activators AICAR and α-lipoic acid substantially prevented all of those changes and increased the phosphorylation of specific sites of mTOR inhibitors raptor and tuberous sclerosis complex 2 (TSC2). In contrast, decreases in AMPK activity induced by leucine and glucose were not associated with a decrease in raptor or TSC2 phosphorylation. CONCLUSIONS The results indicate that both leucine and glucose modulate protein synthesis and mTOR/p70S6 and insulin signaling in skeletal muscle by a common mechanism. They also suggest that the effects of both molecules are associated with a decrease in AMPK activity and that AMPK activation prevents them.


Biochemical and Biophysical Research Communications | 2011

Decreased AMP-activated protein kinase activity is associated with increased inflammation in visceral adipose tissue and with whole-body insulin resistance in morbidly obese humans.

Marie-Soleil Gauthier; Elena L O’Brien; Sherman J. Bigornia; Melanie Mott; José M. Cacicedo; X. Julia Xu; Noyan Gokce; Caroline M. Apovian; Neil B. Ruderman

Inflammation and infiltration of immune cells in white adipose tissue have been implicated in the development of obesity-associated insulin resistance. Likewise, dysregulation of the fuel-sensing enzyme AMP-activated protein kinase (AMPK) has been proposed as a pathogenetic factor for these abnormalities based on both its links to insulin action and its anti-inflammatory effects. In this study, we examined the relationships between AMPK activity, the expression of multiple inflammatory markers in visceral (mesenteric and omental) and abdominal subcutaneous adipose tissue, and whole-body insulin sensitivity in morbidly obese patients (BMI 48±1.9 kg/m(2)) undergoing gastric bypass surgery. AMPK activity was assessed by Western-blots (P-AMPK/T-AMPK) and mRNA levels of various markers of inflammation by qRT-PCR. Patients were stratified as insulin sensitive obese or insulin-resistant obese according to their HOMA-IR values. The results indicate that AMPK activity is lower in visceral than in subcutaneous abdominal adipose tissue of these patients and that this is associated with an increased expression of multiple inflammatory genes. They also revealed that AMPK activity is lower in adipose tissue of obese patients who are insulin resistant (HOMA-IR>2.3) than in BMI-matched insulin sensitive subjects. Furthermore, this difference was evident in all three fat depots. In conclusion, the data suggest that there are close links between reduced AMPK activity and inflammation in white adipose tissue, and whole-body insulin resistance in obese humans. Whether adipose tissue AMPK dysregulation is a causal factor for the development of the inflammation and insulin resistance remains to be determined.


Journal of Lipid Research | 2012

Insulin sensitive and resistant obesity in humans: AMPK activity, oxidative stress, and depot-specific changes in gene expression in adipose tissue

X. Julia Xu; Marie-Soleil Gauthier; Donald T. Hess; Caroline M. Apovian; José M. Cacicedo; Noyan Gokce; Melissa G. Farb; Rudy J. Valentine; Neil B. Ruderman

We previously reported that adenosine monophosphate-activated protein kinase (AMPK) activity is lower in adipose tissue of morbidly obese individuals who are insulin resistant than in comparably obese people who are insulin sensitive. However, the number of patients and parameters studied were small. Here, we compared abdominal subcutaneous, epiploic, and omental fat from 16 morbidly obese individuals classified as insulin sensitive or insulin resistant based on the homeostatic model assessment of insulin resistance. We confirmed that AMPK activity is diminished in the insulin resistant group. A custom PCR array revealed increases in mRNA levels of a wide variety of genes associated with inflammation and decreases in PGC-1α and Nampt in omental fat of the insulin resistant group. In contrast, subcutaneous abdominal fat of the same patients showed increases in PTP-1b, VEGFa, IFNγ, PAI-1, and NOS-2 not observed in omental fat. Only angiotensinogen and CD4+ mRNA levels were increased in both depots. Surprisingly, TNFα was only increased in epiploic fat, which otherwise showed very few changes. Protein carbonyl levels, a measure of oxidative stress, were increased in all depots. Thus, adipose tissues of markedly obese insulin resistant individuals uniformly show decreased AMPK activity and increased oxidative stress compared with insulin sensitive patients. However, most changes in gene expression appear to be depot-specific.


Circulation | 2011

Mitochondrial Transporter ATP Binding Cassette Mitochondrial Erythroid Is a Novel Gene Required for Cardiac Recovery After Ischemia/Reperfusion

Marc Liesa; Ivan Luptak; Fuzhong Qin; Brigham B. Hyde; Ergun Sahin; Zhengkun Zhu; David R. Pimentel; X. Julia Xu; Neil B. Ruderman; Karl Huffman; Susan R. Doctrow; Lauren Richey; Wilson S. Colucci; Orian S. Shirihai

Background Oxidative stress and mitochondrial dysfunction are central mediators of cardiac dysfunction after ischemia/reperfusion. ATP binding cassette mitochondrial erythroid (ABC-me; ABCB10; mABC2) is a mitochondrial transporter highly induced during erythroid differentiation and predominantly expressed in bone marrow, liver, and heart. Until now, ABC-me function in heart was unknown. Several lines of evidence demonstrate that the yeast ortholog of ABC-me protects against increased oxidative stress. Therefore, ABC-me is a potential modulator of the outcome of ischemia/reperfusion in the heart. Methods and Results Mice harboring 1 functional allele of ABC-me (ABC-me+/−) were generated by replacing ABC-me exons 2 and 3 with a neomycin resistance cassette. Cardiac function was assessed with Langendorff perfusion and echocardiography. Under basal conditions, ABC-me+/− mice had normal heart structure, hemodynamic function, mitochondrial respiration, and oxidative status. However, after ischemia/reperfusion, the recovery of hemodynamic function was reduced by 50% in ABC-me+/− hearts as a result of impairments in both systolic and diastolic function. This reduction was associated with impaired mitochondrial bioenergetic function and with oxidative damage to both mitochondrial lipids and sarcoplasmic reticulum calcium ATPase after reperfusion. Treatment of ABC-me+/− hearts with the superoxide dismutase/catalase mimetic EUK-207 prevented oxidative damage to mitochondria and sarcoplasmic reticulum calcium ATPase and restored mitochondrial and cardiac function to wild-type levels after reperfusion. Conclusions Inactivation of 1 allele of ABC-me increases the susceptibility to oxidative stress induced by ischemia/reperfusion, leading to increased oxidative damage to mitochondria and sarcoplasmic reticulum calcium ATPase and to impaired functional recovery. Thus, ABC-me is a novel gene that determines the ability to tolerate cardiac ischemia/reperfusion.


Diabetes | 2015

Improved Insulin Sensitivity 3 Months After RYGB Surgery Is Associated With Increased Subcutaneous Adipose Tissue AMPK Activity and Decreased Oxidative Stress

X. Julia Xu; Caroline M. Apovian; Donald T. Hess; Brian Carmine; Asish K. Saha; Neil B. Ruderman

Morbidly obese individuals are predisposed to a wide range of disorders, including type 2 diabetes, atherosclerotic cardiovascular disease, fatty liver disease, and certain cancers. Remarkably, all of these disorders can be improved or prevented by Roux-en-Y gastric bypass (RYGB) surgery. We have reported that decreased AMPK activity, together with increased oxidative stress and inflammation in adipose tissue, is associated with insulin resistance in morbidly obese bariatric surgery patients. In the current study, we assessed how these parameters are affected by RYGB surgery. Eleven patients (average age of 46 ± 4 years) were studied immediately prior to surgery and 3 months postoperatively. We measured subcutaneous adipose tissue AMPK phosphorylation (threonine 172, an index of its activation), malonyl-CoA content, protein carbonylation (a marker of oxidative stress), plasma adiponectin, and mRNA expression of several inflammatory cytokines. After surgery, AMPK activity increased 3.5-fold and oxidative stress decreased by 50% in subcutaneous adipose tissue. In addition, malonyl-CoA levels were reduced by 80%. Furthermore, patients had improvements in their BMI and insulin sensitivity (HOMA) and had increased circulating high–molecular weight adiponectin and decreased fasting plasma insulin levels. In contrast, the expression of inflammatory markers in subcutaneous adipose tissue was unchanged postoperatively, although plasma CRP was diminished by 50%.


Current Opinion in Lipidology | 2013

What distinguishes adipose tissue of severely obese humans who are insulin sensitive and resistant

X. Julia Xu; Walter J. Pories; Lynis Dohm; Neil B. Ruderman

Purpose of review Despite a strong correlation between obesity and insulin resistance, 25% of severely obese (BMI >40) individuals are insulin sensitive. In this review, we will examine the factors in adipose tissue that distinguish the two groups, as well as reasons for believing the insulin-sensitive group will be less disease prone. Recent findings Obesity has been linked to the metabolic syndrome with an increase in visceral (intra-abdominal) compared to subcutaneous fat. Recent studies in which adipose tissue of insulin-sensitive and insulin-resistant patients with severe obesity were compared indicate that the insulin-resistant group is also distinguished by increases in oxidative stress and decreases in AMP-activated protein kinase (AMPK) activity. In contrast, changes in the expression of genes for SIRT1, inflammatory cytokines, mitochondrial biogenesis and function, and the two &agr;-isoforms of AMPK showed more depot variation. Studies of how these and other changes in adipose tissue respond to bariatric surgery are still in their infancy. Summary Available data suggest that increases in oxidative stress, decreases in AMPK activity and SIRT1 gene expression, depot-specific changes in inflammatory, mitochondrial and other genes distinguish adipose tissue of insulin resistant from insulin-sensitive individuals with severe obesity.


Archives of Biochemistry and Biophysics | 2011

The evolution of insulin resistance in muscle of the glucose infused rat

Amanda E. Brandon; Andrew J. Hoy; Lauren E. Wright; Nigel Turner; Bronwyn D. Hegarty; Tristan J. Iseli; X. Julia Xu; Gregory J. Cooney; Asish K. Saha; Neil B. Ruderman; Edward W. Kraegen

Glucose infusion into rats causes skeletal muscle insulin resistance that initially occurs without changes in insulin signaling. The aim of the current study was to prolong glucose infusion and evaluate other events associated with the transition to muscle insulin resistance. Hyperglycemia was produced in rats by glucose infusion for 3, 5 and 8 h. The rate of infusion required to maintain hyperglycemia was reduced at 5 and 8 h. Glucose uptake into red quadriceps (RQ) and its incorporation into glycogen decreased between 3 and 5 h, further decreasing at 8 h. The earliest observed change in RQ was decreased AMPKα2 activity associated with large increases in muscle glycogen content at 3 h. Activation of the mTOR pathway occurred at 5 h. Akt phosphorylation (Ser(473)) was decreased at 8 h compared to 3 and 5, although no decrease in phosphorylation of downstream GSK-3β (Ser(9)) and AS160 (Thr(642)) was observed. White quadriceps showed a similar but delayed pattern, with insulin resistance developing by 8 h and decreased AMPKα2 activity at 5 h. These results indicate that, in the presence of a nutrient overload, alterations in muscle insulin signaling occur, but after insulin resistance develops and appropriate changes in energy/nutrient sensing pathways occur.


Endocrinology & Diabetes Research | 2016

Distinct Changes in Adipose Tissue and Muscle in Response to Excess Systemic Glucose in Rats

X. Julia Xu; a E Br; on; Ella Stuart; Kaajal Patel; Reyhan Gedik; Asish K. Saha; Edward W. Kraegen; Neil B. Ruderman

Objective: Excess nutrients can cause insulin resistance in skeletal muscle in vivo. However, the response of white adipose tissue is less clear. In a chronic glucose infusion model (1 and 4 days), distinct adaptations in muscle and white adipose tissue have been described. Muscle developed sustained insulin resistance after 1 day of glucose infusion but adipose tissue did not. Exactly what distinguishes adipose tissue from muscle in response to glucose oversupply remains to be determined. The aim of the present study was to investigate the early (3-8 h) metabolic and signaling changes that take place in epididymal fat pads, and to a lesser extent, red quadriceps muscle, using an acute glucose infusion model. Methods: Hyperglycemia (~11 mM) and hyperinsulinemia were generated by infusing glucose into rats for 3, 5, or 8 h. Results: We found that similar to red quadriceps muscle, AMPactivated protein kinase (AMPK) activity was diminished in epididymal fat pads of the glucose infused rats. Yet, both glucose uptake and triglyceride synthesis were increased in epididymal fat whereas muscle showed a progressive decrease in glucose utilization and glycogen synthesis after 5 h. Insulin signaling, as determined by Akt phosphorylation (Ser473), remained intact in epididymal fat but not in red quadriceps muscle. Furthermore, unlike muscle, there was no evidence of PKC activation in epididymal fat. Conclusion: The results confirmed and extend findings that suggest white adipose tissue responds very differently than muscle when exposed to sustained elevated concentration of glucose.


Circulation | 2011

Mitochondrial Transporter ATP Binding Cassette Mitochondrial Erythroid Is a Novel Gene Required for Cardiac Recovery After Ischemia/ReperfusionClinical Perspective

Marc Liesa; Ivan Luptak; Fuzhong Qin; Brigham B. Hyde; Ergun Sahin; Zhengkun Zhu; David R. Pimentel; X. Julia Xu; Neil B. Ruderman; Karl Huffman; Susan R. Doctrow; Lauren Richey; Wilson S. Colucci; Orian S. Shirihai

Background Oxidative stress and mitochondrial dysfunction are central mediators of cardiac dysfunction after ischemia/reperfusion. ATP binding cassette mitochondrial erythroid (ABC-me; ABCB10; mABC2) is a mitochondrial transporter highly induced during erythroid differentiation and predominantly expressed in bone marrow, liver, and heart. Until now, ABC-me function in heart was unknown. Several lines of evidence demonstrate that the yeast ortholog of ABC-me protects against increased oxidative stress. Therefore, ABC-me is a potential modulator of the outcome of ischemia/reperfusion in the heart. Methods and Results Mice harboring 1 functional allele of ABC-me (ABC-me+/−) were generated by replacing ABC-me exons 2 and 3 with a neomycin resistance cassette. Cardiac function was assessed with Langendorff perfusion and echocardiography. Under basal conditions, ABC-me+/− mice had normal heart structure, hemodynamic function, mitochondrial respiration, and oxidative status. However, after ischemia/reperfusion, the recovery of hemodynamic function was reduced by 50% in ABC-me+/− hearts as a result of impairments in both systolic and diastolic function. This reduction was associated with impaired mitochondrial bioenergetic function and with oxidative damage to both mitochondrial lipids and sarcoplasmic reticulum calcium ATPase after reperfusion. Treatment of ABC-me+/− hearts with the superoxide dismutase/catalase mimetic EUK-207 prevented oxidative damage to mitochondria and sarcoplasmic reticulum calcium ATPase and restored mitochondrial and cardiac function to wild-type levels after reperfusion. Conclusions Inactivation of 1 allele of ABC-me increases the susceptibility to oxidative stress induced by ischemia/reperfusion, leading to increased oxidative damage to mitochondria and sarcoplasmic reticulum calcium ATPase and to impaired functional recovery. Thus, ABC-me is a novel gene that determines the ability to tolerate cardiac ischemia/reperfusion.

Collaboration


Dive into the X. Julia Xu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward W. Kraegen

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda E. Brandon

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge