Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where X. Li is active.

Publication


Featured researches published by X. Li.


Analytical and Bioanalytical Chemistry | 2012

Comparative proteomic analysis of grain development in two spring wheat varieties under drought stress

Pei Ge; Chaoying Ma; Shunli Wang; Liyan Gao; X. Li; Guangfang Guo; Wujun Ma; Yueming Yan

Two spring wheat varieties Ningchun 4 and Chinese Spring with good and poor resistance to abiotic stress, respectively, were used to investigate proteomic changes in the developing grains under drought stress by a comparative proteomics approach. A total of 152 protein spots showed at least twofold differences in abundance on two-dimensional electrophoresis (2-DE) maps, of which 28 and 68 protein spots were identified by MALDI-TOF and MALDI-TOF/TOF mass spectrometry, respectively. Of the 96 identified protein spots, six different expression patterns were found and they were involved in stress/defense/detoxification, carbohydrate metabolism, photosynthesis, nitrogen metabolism, storage proteins and some other important functions. Comparative proteomic analysis revealed that under the drought conditions the decreased degree of ascorbate peroxidases was more significant in Chinese Spring than in Ningchun 4 during grain development whereas translationally controlled tumor protein, which was significantly upregulated at 14 DAF, was present in Ningchun 4 and absent in Chinese Spring. The Rubisco large subunit displayed an upregulated expression pattern in Ningchun 4. In addition, two drought-tolerant proteins, triosephosphate isomerase and oxygen-evolving complex showed B and F type expression patterns in Chinese Spring, but D and B types in Ningchun 4, respectively. These differentially expressed proteins might be responsible for the stronger drought resistance of Ningchun 4 compared to Chinese Spring.


Phytochemistry | 2011

Proteome analysis of wheat leaf under salt stress by two-dimensional difference gel electrophoresis (2D-DIGE)

Liyan Gao; Xing Yan; X. Li; Guangfang Guo; Yingkao Hu; Wujun Ma; Yueming Yan

Salt stress is a major abiotic stress that limits agricultural productivity in many regions of the world. To understand the molecular basis of the salt stress response in wheat (Triticum aestivum L.), a proteomic approach was used to identify the salt stress-responsive proteins in an elite Chinese wheat cultivar, Zhengmai 9023, which exhibits a high yield, superior gluten quality and better biotic resistance. Three-week-old seedlings were treated with NaCl of four different concentrations (1.0%, 1.5%, 2.0%, and 2.5%). The total proteins from the leaves of untreated and NaCl-treated plants were extracted and separated by two-dimensional difference gel electrophoresis (2D-DIGE). A total of 2358 protein spots were detected on the gels, among which 125 spots showed a significant change in protein abundance, and 83 differentially expressed spots were localised on preparative gels. Using Q-TOF mass spectrometry, 52 salt-responsive spots were identified, which were classified into six functional categories that included transport-associated proteins, detoxifying enzymes, ATP synthase, carbon metabolism, protein folding, and proteins with unknown biological functions. Of the 52 differentially expressed proteins, 26 were up-regulated, 21 were down-regulated, and five spots showed multi-expression patterns. In particular, some important proteins for salt tolerance were found to be up-regulated in Zhengmai 9023 under salt stress, such as H(+)-ATPases, glutathione S-transferase, ferritin and triosephosphate isomerase.


International Journal of Molecular Sciences | 2012

Wheat Drought-Responsive Grain Proteome Analysis by Linear and Nonlinear 2-DE and MALDI-TOF Mass Spectrometry.

Shan-Shan Jiang; Xiao-Na Liang; X. Li; Shunli Wang; Dongwen Lv; Chaoying Ma; Xiaohui Li; Wujun Ma; Yueming Yan

A comparative proteomic analysis of drought-responsive proteins during grain development of two wheat varieties Kauz (strong resistance to drought stress) and Janz (sensitive to drought stress) was performed by using linear and nonlinear 2-DE and MALDI-TOF mass spectrometry technologies. Results revealed that the nonlinear 2-DE had much higher resolution than the linear 2-DE. A total of 153 differentially expressed protein spots were detected by both 2-DE maps, of which 122 protein spots were identified by MALDI-TOF and MALDI-TOF/TOF mass spectrometry. The identified differential proteins were mainly involved in carbohydrate metabolism (26%), detoxification and defense (23%), and storage proteins (17%). Some key proteins demonstrated significantly different expression patterns between the two varieties. In particular, catalase isozyme 1, WD40 repeat protein, LEA and alpha-amylase inhibitors displayed an upregulated expression pattern in Kauz, whereas they were downregulated or unchanged in Janz. Small and large subunit ADP glucose pyrophosphorylase, ascorbate peroxidase and G beta-like protein were all downregulated under drought stress in Janz, but had no expression changes in Kauz. Sucrose synthase and triticin precursor showed an upregulated expression pattern under water deficits in both varieties, but their upregulation levels were much higher in Kauz than in Janz. These differentially expressed proteins could be related to the biochemical pathways for stronger drought resistance of Kauz.


Theoretical and Applied Genetics | 2010

Molecular characterization and comparative transcriptional analysis of LMW-m-type genes from wheat (Triticum aestivum L.) and Aegilops species.

X. Li; Ke Wang; Shunli Wang; Liyan Gao; X. X. Xie; S. L. K. Hsam; F. J. Zeller; Yueming Yan

Twelve new LMW-GS genes were characterized from bread wheat (Triticum aestivum L.) cultivar Zhongyou 9507 and five Aegilops species by AS-PCR. These genes belong to the LMW-m type and can be classified into two subclasses designated as 1 and 2, with the latter predominant in both wheat and related wild species. Genes in the two subclasses were significantly different from each other in SNPs and InDels variations. In comparison to subclass 1, the structural features of subclass 2 differs in possessing 21 amino acid residue substitutions, two fragment deletions (each with 7 amino acid residues), and a double-residue deletion and two fragment insertions (12 and 2–5 residues). Phylogenetic analysis revealed that the two subclasses were divergent at about 6.8xa0MYA, earlier than the divergence of C, M, N, Ss and U genomes. The Ss and B genomes displayed a very close relationship, whereas the C, M, N and U genomes appeared to be related to the D genome of bread wheat. The presently characterized genes ZyLMW-m1 and ZyLMW-m2 from Zhongyou 9507 were assigned to the D genome. Moreover, these genes were expressed successfully in Escherichia coli. Their transcriptional levels during grain developmental stages detected by quantitative real-time PCR (qRT-PCR) showed that both genes started to express at 5xa0days post-anthesis (DPA), reaching the maximum at 14xa0DPA after which their expressions decreased. Furthermore, the expression level of ZyLMW-m2 genes was much higher than that of ZyLMW-m1 during all grain developmental stages, suggesting that the expression efficiency of LMW-GS genes between the two subclasses was highly discrepant.


Journal of Applied Genetics | 2012

Identification and molecular characterisation of HMW glutenin subunit 1By16* in wild emmer

M. Jin; Z.-Z. Xie; Pei Ge; Jie Li; S.-S. Jiang; Saminathan Subburaj; X. Li; F. J. Zeller; S. L. K. Hsam; Yueming Yan

In this study, a novel y-type high molecular weight glutenin subunit (HMW-GS) in wild emmer wheat Triticum turgidum L. var. dicoccoides (Körn.) accession KU1952 was identified by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), capillary electrophoresis (CE) and matrix-assisted laser desorption ionisation/time-of-flight/mass spectrometry (MALDI-TOF-MS). Its electrophoretic mobility and molecular weight were similar to those of 1By16 and was designated as 1By16*. The complete coding sequence of the 1By16* gene isolated by allelic-specific polymerase chain reaction (AS-PCR) consists of 2,157xa0bp, encoding 729 amino acid residues. The real presence and authenticity of the 1By16* gene in KU1952 were further confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), heterologous expression and Western blotting. The molecular structure as well as phylogenetic analysis revealed that 1By16* had 21 single-nucleotide polymorphism (SNP) variations and possessed greater similarity with superior quality subunits 1By15 and 1By16 of common wheat. Secondary structure prediction displayed higher α-helix and β-strand contents in the 1By16* subunit, which could form a superior gluten structure and, consequently, might have positive effects on dough quality. Our results suggest that 1By16* is expected to be a new potential gene for wheat quality improvement.


BMC Genomics | 2014

Large-scale phosphoproteome analysis in seedling leaves of Brachypodium distachyon L.

Dongwen Lv; X. Li; Ming Zhang; Aiqin Gu; Shoumin Zhen; Chang Wang; Xiaohui Li; Yueming Yan

BackgroundProtein phosphorylation is one of the most important post-translational modifications involved in the regulation of plant growth and development as well as diverse stress response. As a member of the Poaceae, Brachypodium distachyon L. is a new model plant for wheat and barley as well as several potential biofuel grasses such as switchgrass. Vegetative growth is vital for biomass accumulation of plants, but knowledge regarding the role of protein phosphorylation modification during vegetative growth, especially in biofuel plants, is far from comprehensive.ResultsIn this study, we carried out the first large-scale phosphoproteome analysis of seedling leaves in Brachypodium accession Bd21 using TiO2 microcolumns combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and MaxQuant software. A total of 1470 phosphorylation sites in 950 phosphoproteins were identified, and these phosphoproteins were implicated in various molecular functions and basic cellular processes by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Among the 950 phosphoproteins identified, 127 contained 3 to 8 phosphorylation sites. Conservation analysis showed that 93.4% of the 950 phosphoproteins had phosphorylation orthologs in other plant species. Motif-X analysis of the phosphorylation sites identified 13 significantly enriched phosphorylation motifs, of which 3 were novel phosphorylation motifs. Meanwhile, there were 91 phosphoproteins with both multiple phosphorylation sites and multiple phosphorylation motifs. In addition, we identified 58 phosphorylated transcription factors across 21 families and found out 6 significantly over-represented transcription factor families (C3H, Trihelix, CAMTA, TALE, MYB_related and CPP). Eighty-four protein kinases (PKs), 8 protein phosphatases (PPs) and 6 CESAs were recognized as phosphoproteins.ConclusionsThrough a large-scale bioinformatics analysis of the phosphorylation data in seedling leaves, a complicated PKs- and PPs- centered network related to rapid vegetative growth was deciphered in B. distachyon. We revealed a MAPK cascade network that might play the crucial roles during the phosphorylation signal transduction in leaf growth and development. The phosphoproteins and phosphosites identified from our study expanded our knowledge of protein phosphorylation modification in plants, especially in monocots.


Journal of Applied Genetics | 2013

Cloning, expression, and evolutionary analysis of α-gliadin genes from Triticum and Aegilops genomes

Jie Li; Shunli Wang; Min Cao; Dongwen Lv; Saminathan Subburaj; X. Li; F. J. Zeller; S. L. K. Hsam; Yueming Yan

Fifteen novel α-gliadin genes were cloned and sequenced from Triticum and related Aegilops genomes by allele-specific polymerase chain reaction (AS-PCR). Sequence comparison displayed high diversities in the α-gliadin gene family. Four toxic epitopes and glutamine residues in the two polyglutamine domains facilitated these α-gliadins to be assigned to specific chromosomes. Five representative α-gliadin genes were successfully expressed in Escherichia coli, and their amount reached a maximum after 4xa0h induced by isopropyl-β-D-thiogalactoside (IPTG), indicating a high level of expression under the control of T7 promoter. The transcriptional expression of α-gliadin genes during grain development detected by quantitative real-time polymerase chain reaction (qRT-PCR) showed a similar up–down regulation pattern in different genotypes. A neighbor-joining tree constructed with both full-open reading frame (ORF) α-gliadin genes and pseudogenes further revealed the origin and phylogenetic relationships among Triticum and related Aegilops genomes. The evolutionary analysis demonstrated that α-gliadin genes evolved mainly by synonymous substitutions under strong purifying selection during the evolutionary process.


Cereal Research Communications | 2009

Isolation and expression of a new high molecular weight glutenin subunit gene at the Glu-D-1-2 locus from Aegilops tauschii.

Yong Zhang; Xueli An; X. Li; S. Chen; Liyan Gao; Ke Wang; Shunli Wang; Yueming Yan

Two new y-type HMW-GSs in Ae. tauschii , 1Dy12.1* t and 1Dy12.2 t with the mobility order of 1Dy12.2 t > 1Dy12.1* t > 1Dy12.1 t >1Dy12, were identified by both SDS-PAGE and MALDI-TOF-MS. Molecular cloning and sequencing showed that the genes encoding subunits 1Dy12.1* t and 1Dy12.2 t had identical nucleotide acid sequences with 1,947 bp encoding a mature protein of 627 residues. Their deduced molecular weights were 67,347.6 Da, satisfactorily corresponding to that of 1Dy12.2 t subunit determined by MALDI-TOF-MS (67,015.7 Da), but was significantly smaller than that of the the 1Dy12.1* t subunit (68,577.1 Da). Both subunits showed high similarities to 1Dy10, suggesting that they could have a positive effect on bread-making quality. Interestingly, the expressed protein of the cloned ORF from accessions TD87 and TD130 in E. coli co-migrated with subunit 1Dy12.2 t , but moved slightly faster than 1Dy12.1* t on SDS-PAGE. The expressed protein in transgenic tobacco seeds, however, had the same mobility as the 1...


Functional & Integrative Genomics | 2014

The α-gliadin genes from Brachypodium distachyon L. provide evidence for a significant gap in the current genome assembly

Guanxing Chen; Dongwen Lv; Wenhui Li; Saminathan Subburaj; Zitong Yu; Y. Wang; X. Li; Ke Wang; Xingguo Ye; Wujun Ma; Yueming Yan

Brachypodium distachyon, is a new model plant for most cereal crops while gliadin is a class of wheat storage proteins related with wheat quality attributes. In the published B. distachyon genome sequence databases, no gliadin gene is found. In the current study, a number of gliadin genes in B. distachyon were isolated, which is contradictory to the results of genome sequencing projects. In our study, the B. distachyon seeds were found to have no gliadin protein expression by gel electrophoresis, reversed-phase high-performance liquid chromatography and Western blotting analysis. However, Southern blotting revealed a presence of more than ten copies of α-gliadin coding genes in B. distachyon. By means of AS-PCR amplification, four novel full-ORF α-gliadin genes, and 26 pseudogenes with at least one stop codon as well as their promoter regions were cloned and sequenced from different Brachypodium accessions. Sequence analysis revealed a few of single-nucleotide polymorphisms among these genes. Most pseudogenes were resulted from a C to T change, leading to the generation of TAG or TAA in-frame stop codon. To compare both the full-ORFs and the pseudogenes among Triticum and Triticum-related species, their structural characteristics were analyzed. Based on the four T cell stimulatory toxic epitopes and two ployglutamine domains, Aegilops, Triticum, and Brachypodium species were found to be more closely related. The phylogenetic analysis further revealed that B. distachyon was more closely related to Aegilops tauschii, Aegilops umbellulata, and the A or D genome of Triticum aestivum. The α-gliadin genes were able to express successfully in E. coli using the functional T7 promoter. The relative and absolute quantification of the transcripts of α-gliadin genes in wheat was much higher than that in B. distachyon. The abundant pseudogenes may affect the transcriptional and/or posttranscriptional level of the α-gliadin in B. distachyon.


Cereal Research Communications | 2013

Applications of capillary electrophoresis for rapidly separating and characterizing water-soluble proteins of wheat grains

Caixia Han; Zitong Yu; S. Feng; Dongwen Lv; Xing Yan; Guanxing Chen; X. Li; Wujun Ma; Yueming Yan

Separation and analysis of water-soluble proteins (WSP) are important in understanding wheat grain proteome fundamentals. However, due to their high degree of heterogeneity and complexity in the compositions, separating WSP is generally difficult and relevant methodologies are not efficiently developed yet. Capillary electrophoresis (CE) is one of the analytical methods currently used for protein separation and characterization. In the present study, a CE method is established for rapidly separating and characterizing WSP of wheat grains. The established method was tested in various applications including wheat variety and germplasm identification as well as protein synthesis and accumulation studies during different grain development stages subject to genotypic and environmental variations. As results, the characteristic CE patterns of a range of bread wheat cultivars and related species were readily identified. The synthesis and accumulation patterns of wheat WSP during developing grains as well as their stabilities in different environments were also investigated. The technical advancements present in this article appear to be useful for wheat cultivar and germplasm identification as well as genetics and breeding research.

Collaboration


Dive into the X. Li's collaboration.

Top Co-Authors

Avatar

Yueming Yan

Capital Normal University

View shared research outputs
Top Co-Authors

Avatar

Shunli Wang

Capital Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liyan Gao

Capital Normal University

View shared research outputs
Top Co-Authors

Avatar

Dongwen Lv

Capital Normal University

View shared research outputs
Top Co-Authors

Avatar

Ke Wang

Capital Normal University

View shared research outputs
Top Co-Authors

Avatar

Pei Ge

Capital Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aili Wang

Capital Normal University

View shared research outputs
Top Co-Authors

Avatar

Chaoying Ma

Capital Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge