Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where X. Long Zheng is active.

Publication


Featured researches published by X. Long Zheng.


Annual Review of Pathology-mechanisms of Disease | 2008

Pathogenesis of Thrombotic Microangiopathies

X. Long Zheng; J. Evan Sadler

Profound thrombocytopenia and microangiopathic hemolytic anemia characterize thrombotic microangiopathy, which includes two major disorders: thrombotic thrombocytopenic purpura (TTP) and hemolytic uremic syndrome (HUS). TTP has at least three types: congenital or familial, idiopathic, and nonidiopathic. The congenital and idiopathic TTP syndromes are caused primarily by deficiency of ADAMTS13, owing to mutations in the ADAMTS13 gene or autoantibodies that inhibit ADAMTS13 activity. HUS is similar to TTP, but is associated with acute renal failure. Diarrhea-associated HUS accounts for more than 90% of cases and is usually caused by infection with Shiga-toxin-producing Escherichia coli (O157:H7). Diarrhea-negative HUS is associated with complement dysregulation in up to 50% of cases, caused by mutations in complement factor H, membrane cofactor protein, factor I or factor B, or by autoantibodies against factor H. The incomplete penetrance of mutations in either ADAMTS13 or complement regulatory genes suggests that precipitating events or triggers may be required to cause thrombotic microangiopathy in many patients.


Journal of Biological Chemistry | 2005

The proximal carboxyl-terminal domains of ADAMTS13 determine substrate specificity and are all required for cleavage of von willebrand factor

Jihui Ai; Paula Smith; Shuwei Wang; Ping Zhang; X. Long Zheng

ADAMTS13 limits platelet-rich thrombosis by cleaving von Willebrand factor at the Tyr1605–Met1606 bond. Previous studies showed that ADAMTS13 truncated after spacer domain remains proteolytically active or hyperactive. However, the relative contribution of each domain within the proximal carboxyl terminus of ADAMTS13 in substrate recognition and specificity is not known. We showed that a metalloprotease domain alone was unable to cleave the Tyr–Met bond of glutathione S-transferase (GST)-VWF73-H substrate in 3 h, but it did cleave the substrate at a site other than the Tyr–Met bond after 16–24 h of incubation. Remarkably, the addition of even one or several proximal carboxyl-terminal domains of ADAMTS13 restored substrate specificity. Full proteolytic activity, however, was not achieved until all of the proximal carboxyl-terminal domains were added. The addition of TSP1 2–8 repeats and two CUB domains did not further increase proteolytic activity. Furthermore, ADAMTS13 truncated after the spacer domain with or without metalloprotease domain bound GST-VWF73-H with a Kd of ≈7.0 or 13 nm, comparable with full-length ADAMTS13 (Kd = 4.6 nm). Metalloprotease domain did not bind GST-VWF73-H detectably, but the disintegrin domain, first TSP1 repeat, Cys-rich domain, and spacer domain bound GST-VWF73-H with Kd values of 489, 136, 121, and 108 nm, respectively. These proximal carboxyl-terminal domains dose-dependently inhibited cleavage of fluorescent resonance energy transfer (FRETS)-VWF73 by full-length ADAMTS13 and ADAMTS13 truncated after the spacer domain. These data demonstrated that the proximal carboxyl-terminal domains of ADAMTS13 determine substrate specificity and are all required for recognition and cleavage of von Willebrand factor between amino acid residues Asp1595 and Arg1668.


Haematologica | 2010

Multiple domains of ADAMTS13 are targeted by autoantibodies against ADAMTS13 in patients with acquired idiopathic thrombotic thrombocytopenic purpura

X. Long Zheng; Haifeng M. Wu; Dezhi Shang; Erica M. Falls; Christopher G. Skipwith; Spero R. Cataland; Charles L. Bennett; Hau C. Kwaan

Background Type G immunoglobulins against ADAMTS13 are the primary cause of acquired (idiopathic) thrombotic thrombocytopenic purpura. However, the domains of ADAMTS13 which the type G anti-ADAMT13 immunoglobulins target have not been investigated in a large cohort of patients with thrombotic thrombocytopenic purpura. Design and Methods Sixty-seven patients with acquired idiopathic thrombotic thrombocytopenic purpura were prospectively collected from three major U.S. centers. An enzyme-linked immunosorbent assay determined plasma concentrations of anti-ADAMTS13 type G immunoglobulins, whereas immunoprecipitation plus western blotting determined the binding domains of these type G immunoglobulins. Results Plasma anti-ADAMTS13 type G immunoglobulins from 67 patients all bound full-length ADAMTS13 and a variant truncated after the eighth TSP1 repeat (delCUB). Approximately 97% (65/67) of patients harbored type G immunoglobulins targeted against a variant truncated after the spacer domain (MDTCS). However, only 12% of patients’ samples reacted with a variant lacking the Cys-rich and spacer domains (MDT). In addition, approximately 37%, 31%, and 46% of patients’ type G immunoglobulins interacted with the ADAMTS13 fragment containing TSP1 2-8 repeats (T2-8), CUB domains, and TSP1 5-8 repeats plus CUB domains (T5-8CUB), respectively. The presence of type G immunoglobulins targeted against the T2-8 and/or CUB domains was inversely correlated with the patients’ platelet counts on admission. Conclusions This multicenter study further demonstrated that the multiple domains of ADAMTS13, particularly the Cys-rich and spacer domains, are frequently targeted by anti-ADAMTS13 type G immunoglobulins in patients with acquired (idiopathic) thrombotic thrombocytopenic purpura. Our data shed more light on the pathogenesis of acquired thrombotic thrombocytopenic purpura and provide further rationales for adjunctive immunotherapy.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Factor VIII accelerates proteolytic cleavage of von Willebrand factor by ADAMTS13

Sriram Krishnaswamy; Rodney M. Camire; Peter J. Lenting; X. Long Zheng

Proteolytic processing of von Willebrand factor (VWF) by ADAMTS13 metalloproteinase is crucial for normal hemostasis. In vitro, cleavage of VWF by ADAMTS13 is slow even at high shear stress and is typically studied in the presence of denaturants. We now show that, under shear stress and at physiological pH and ionic strength, coagulation factor VIII (FVIII) accelerates, by a factor of ≈10, the rate of specific cleavage at the Tyr1605–Met1606 bond in VWF. Multimer analysis reveals that FVIII preferentially accelerates the cleavage of high-molecular-weight multimers. This rate enhancement is not observed with VWF predenatured with 1.5 M guanidine. The ability of FVIII to enhance VWF cleavage by ADAMTS13 is rapidly lost after pretreatment of FVIII with thrombin. A FVIII derivative lacking most of the B domain behaves equivalently to full-length FVIII. In contrast, a derivative lacking both the B domain and the acidic region a3 that contributes to the high-affinity interaction of FVIII with VWF exhibits a greatly reduced ability to enhance VWF cleavage. Our data suggest that FVIII plays a role in regulating proteolytic processing of VWF by ADAMTS13 under shear stress, which depends on the high-affinity interaction between FVIII and its carrier protein, VWF.


Blood | 2012

Gain-of-function ADAMTS13 variants that are resistant to autoantibodies against ADAMTS13 in patients with acquired thrombotic thrombocytopenic purpura

Cui Jian; Juan Xiao; Lingjie Gong; Christopher G. Skipwith; Sheng Yu Jin; Hau C. Kwaan; X. Long Zheng

Thrombotic thrombocytopenic purpura (TTP) is primarily caused by immunoglobulin G (IgG) autoantibodies against A Disintegrin And Metalloprotease with ThromboSpondin type 1 repeats, 13 (ADAMTS13). Nearly all adult idiopathic TTP patients harbor IgGs, which bind the spacer domain of ADAMTS13, a region critical for recognition and proteolysis of von Willebrand factor (VWF). We hypothesize that a modification of an exosite in the spacer domain may generate ADAMTS13 variants with reduced autoantibody binding while preserving or enhancing specific activity. Site-directed mutagenesis was used to generate a series of ADAMTS13 variants, and their functional properties were assessed. Of 24 novel ADAMTS13 variants, 2 (ie, M4, R660K/F592Y/R568K/Y661F and M5, R660K/F592Y/R568K/Y661F/Y665F) exhibited increased specific activity approximately 4- to 5-fold and approximately 10- to 12-fold cleaving a peptide VWF73 substrate and multimeric VWF, respectively. More interestingly, the gain-of-function ADAMTS13 variants were more resistant to inhibition by anti-ADAMTS13 autoantibodies from patients with acquired idiopathic TTP because of reduced binding by anti-ADAMTS13 IgGs. These results shed more light on the critical role of the exosite in the spacer domain in substrate recognition. Our findings also help understand the pathogenesis of acquired autoimmune TTP. The autoantibody-resistant ADAMTS13 variants may be further developed as a novel therapeutic for acquired TTP with inhibitors.


Kidney International | 2009

Ticlopidine- and clopidogrel-associated thrombotic thrombocytopenic purpura (TTP): review of clinical, laboratory, epidemiological, and pharmacovigilance findings (1989–2008)

Anaadriana Zakarija; Hau C. Kwaan; Joel L. Moake; Nicholas Bandarenko; Dilip K. Pandey; June M. McKoy; Paul R. Yarnold; Dennis W. Raisch; Jeffrey L. Winters; Thomas J. Raife; John F. Cursio; Thanh Ha Luu; Elizabeth A. Richey; Matthew J. Fisher; Thomas L. Ortel; Martin S. Tallman; X. Long Zheng; Masanori Matsumoto; Yoshihiro Fujimura; Charles L. Bennett

Thrombotic thrombocytopenic purpura (TTP) is a fulminant disease characterized by platelet aggregates, thrombocytopenia, renal insufficiency, neurologic changes, and mechanical injury to erythrocytes. Most idiopathic cases of TTP are characterized by a deficiency of ADAMTS13 (a disintegrin and metalloprotease, with thrombospondin-1-like domains) metalloprotease activity. Ironically, use of anti-platelet agents, the thienopyridine derivates clopidogrel and ticlopidine, is associated with drug induced TTP. Data were abstracted from a systematic review of English-language literature for thienopyridine-associated TTP identified in MEDLINE, EMBASE, the public website of the Food and Drug Administration, and abstracts from national scientific conferences from 1991 to April 2008. Ticlopidine and clopidogrel are the two most common drugs associated with TTP in FDA safety databases. Epidemiological studies identify recent initiation of anti-platelet agents as the most common risk factor associated with risks of developing TTP. Laboratory studies indicate that most cases of thienopyridine-associated TTP involve an antibody to ADAMTS13 metalloprotease, present with severe thrombocytopenia, and respond to therapeutic plasma exchange (TPE); a minority of thienopyridine-associated TTP presents with severe renal insufficiency, involves direct endothelial cell damage, and is less responsive to TPE. The evaluation of this potentially fatal drug toxicity can serve as a template for future efforts to comprehensively characterize other severe adverse drug reactions.


Blood | 2010

Amino acid residues Arg659, Arg660 and Tyr661 in the spacer domain of ADAMTS13 are critical for cleavage of von Willebrand factor

Sheng-Yu Jin; Christopher G. Skipwith; X. Long Zheng

Previous studies have shown that ADAMTS13 spacer domain is required for cleavage of von Willebrand factor (VWF). However, the exact amino acid residues within this domain critical for substrate recognition are not known. Epitope mapping of anti-ADAMTS13 immunoglobulin G from patients with thrombotic thrombocytopenic purpura and sequence alignment of the ADAMTS13 spacer domains of human, mouse, and zebrafish with these of human and murine ADAMTS1, a closely related member of ADAMTS family, have provided hints to investigate the role of the amino acid residues between Arg(659) and Glu(664) of the ADAMTS13 spacer domain in substrate recognition. A deletion of all these 6 amino acid residues (ie, Arg(659)-Glu(664)) from the ADAMTS13 spacer domain resulted in dramatically reduced proteolytic activity toward VWF73 peptides, guanidine-HCl denatured VWF, and native VWF under fluid shear stress, as well as ultralarge VWF on endothelial cells. Site-directed mutagenesis, kinetic analyses, and peptide inhibition assays have further identified a role for amino acid residues Arg(659), Arg(660), and Tyr(661) in proteolytic cleavage of various substrates under static and fluid shear stress conditions. These findings may provide novel insight into the structural-function relationship of ADAMTS13 and help us to understand pathogenesis of thrombotic thrombocytopenic purpura and other arterial thromboses associated with compromised VWF proteolysis.


Annual Review of Medicine | 2015

ADAMTS13 and von Willebrand Factor in Thrombotic Thrombocytopenic Purpura

X. Long Zheng

Pathogenesis of thrombotic thrombocytopenic purpura (TTP) was a mystery for over half a century until the discovery of ADAMTS13. ADAMTS13 is primarily synthesized in the liver, and its main function is to cleave von Willebrand factor (VWF) anchored on the endothelial surface, in circulation, and at the sites of vascular injury. Deficiency of plasma ADAMTS13 activity (<10%) resulting from mutations of the ADAMTS13 gene or autoantibodies against ADAMTS13 causes hereditary or acquired (idiopathic) TTP. ADAMTS13 activity is usually normal or modestly reduced (>20%) in other forms of thrombotic microangiopathy secondary to hematopoietic progenitor cell transplantation, infection, and disseminated malignancy or in hemolytic uremic syndrome. Plasma infusion or exchange remains the initial treatment of choice to date, but novel therapeutics such as recombinant ADAMTS13 and gene therapy are under development. Moreover, ADAMTS13 deficiency has been shown to be a risk factor for the development of myocardial infarction, stroke, cerebral malaria, and preeclampsia.


Transfusion | 2011

Toward a definition of “fresh” whole blood: an in vitro characterization of coagulation properties in refrigerated whole blood for transfusion

David R. Jobes; Yanika Wolfe; Daniel O'Neill; Jennifer Calder; Lisa Jones; Deborah A. Sesok-Pizzini; X. Long Zheng

BACKGROUND: The hemostatic property of “fresh” whole blood (WB) has been observed in military application and cardiac surgery and is associated with reduced blood loss, transfusion requirements, and donor exposures. The time from donation to transfusion defining “fresh” has not been systematically studied. We undertook an in vitro study of coagulation properties of refrigerated WB stored for 31 days.


Journal of Biological Chemistry | 2010

Factor VIII and Platelets Synergistically Accelerate Cleavage of von Willebrand Factor by ADAMTS13 under Fluid Shear Stress

Christopher G. Skipwith; X. Long Zheng

Previous studies have demonstrated that factor VIII (FVIII) or platelets alone increase cleavage of von Willebrand factor (VWF) by ADAMTS13 under mechanically induced shear stresses. We show in this study that the combination of FVIII and platelets at the physiological concentrations is more effective than either one alone. In the absence of FVIII, lyophilized platelets increase the formation of cleavage product by 2–3-fold. However, in the presence of physiological concentration of FVIII (1 nm), the formation of VWF cleavage product increases dramatically as a function of increasing platelets with the maximal rate enhancement of ∼8-fold. Conversely, in the presence of a physiological concentration of lyophilized platelets (150 × 103/μl), the half-maximal concentration of FVIII required to accelerate VWF proteolysis by ADAMTS13 reduces by ∼10-fold (to ∼0.3 nm) compared with that in the absence of platelets (∼3.0 nm). Further studies using the FVIII derivative that lacks an acidic region (a3), an antiplatelet glycoprotein 1bα IgG, and a purified recombinant VWF-A1 domain or glycoprotein 1bα-stripped platelets demonstrate that the synergistic rate-enhancing effect of FVIII and platelets depends on their specific binding interactions with VWF. Our findings suggest that FVIII and platelets are cofactors that regulate proteolysis of multimeric VWF by ADAMTS13 under physiological conditions.

Collaboration


Dive into the X. Long Zheng's collaboration.

Top Co-Authors

Avatar

Sheng-Yu Jin

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Juan Xiao

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Christopher G. Skipwith

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Yingying Mao

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Don L. Siegel

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Douglas B. Cines

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Huy P. Pham

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Jialing Bao

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Lance A. Williams

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Charles L. Bennett

University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge