Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where X. N. Tang is active.

Publication


Featured researches published by X. N. Tang.


Journal of Chemical Physics | 2005

A time-dependent wave-packet quantum scattering study of the reaction H2+(v=0–2,4,6;j=1)+He→HeH++H

Tian-Shu Chu; Rui-Feng Lu; Ke-Li Han; X. N. Tang; Hong Xu; C. Y. Ng

The quantum scattering dynamics calculation was carried out for the titled reaction in the collision energy range of 0.0-2.4 eV with reactant H(2) (+) in the rotational state j = 1 and vibrational states v = 0-2, 4, and 6. The present time-dependent wave-packet calculation takes into account the Coriolis coupling (CC) and uses the accurate ab initio potential-energy surface of Palmieri et al. [Mol. Phys. 98, 1835 (2000)]. The importance of including the CC quantum scattering calculation has been revealed by the comparison between the CC calculation and the previous coupled state (CS) calculation. The CC total cross sections for the v = 2, 4, and 6 states show collision energy-dependent behaviors different from those based on the CS calculation. Furthermore, the collision energy dependence of the total cross sections obtained in the present CC calculation only exhibits minor oscillations, indicating that the chance is slim for reactive resonances in total cross sections to survive through the partial-wave averaging. The magnitude and profile of the CC total cross sections for v = 0-2 in the collision energy range of 0.0-2.5 eV are found to be consistent with experimental cross sections obtained recently by Tang et al. [J. Chem. Phys. 122, 164301 (2005)] after taking into account the experimental uncertainties.


Journal of Chemical Physics | 2005

A pulsed-field ionization photoelectron secondary ion coincidence study of the H2+(X,υ+=0–15,N+=1)+He proton transfer reaction

X. N. Tang; Hong Xu; Tejia Zhang; Yu Hou; C. Chang; C. Y. Ng; Yu-hui Chiu; Rainer A. Dressler; Dale J. Levandier

The endothermic proton transfer reaction, H2+(upsilon+)+He-->HeH+ + H(DeltaE=0.806 eV), is investigated over a broad range of reactant vibrational levels using high-resolution vacuum ultraviolet to prepare reactant ions either through excitation of autoionization resonances, or using the pulsed-field ionization-photoelectron-secondary ion coincidence (PFI-PESICO) approach. In the former case, the translational energy dependence of the integral reaction cross sections are measured for upsilon+=0-3 with high signal-to-noise using the guided-ion beam technique. PFI-PESICO cross sections are reported for upsilon+=1-15 and upsilon+=0-12 at center-of-mass collision energies of 0.6 and 3.1 eV, respectively. All ion reactant states selected by the PFI-PESICO scheme are in the N+=1 rotational level. The experimental cross sections are complemented with quasiclassical trajectory (QCT) calculations performed on the ab initio potential energy surface provided by Palmieri et al. [Mol. Phys. 98, 1839 (2000)]. The QCT cross sections are significantly lower than the experimental results near threshold, consistent with important contributions due to resonances observed in quantum scattering studies. At total energies above 2 eV, the QCT calculations are in excellent agreement with the present results. PFI-PESICO time-of-flight (TOF) measurements are also reported for upsilon+=3 and 4 at a collision energy of 0.6 eV. The velocity inverted TOF spectra are consistent with the prevalence of a spectator-stripping mechanism.


Journal of Chemical Physics | 2003

A state-selected study of the H+2(X,v+ = 0 - 17,N+ = 1) + Ne proton transfer reaction using the pulsed-field ionization-photoelectron-secondary ion coincidence scheme

Tejia Zhang; X.-M. Qian; X. N. Tang; C. Y. Ng; Yu-Hui Chiu; Dale J. Levandier; J. S. Miller; Rainer A. Dressler

The endothermic proton transfer reaction, H2+(v+,N+=1)+Ne→NeH++H(ΔH=0.54 eV), is investigated over a broad range of reactant vibrational energies using the pulsed-field ionization–photoelectron–secondary ion coincidence (PFI–PESICO) scheme. For the lowest vibrational levels, v+=0 and 1, a detailed translational energy dependence is also presented using a continuous approach for preparing reactant ions with monochromatic VUV. Sharp threshold onsets are observed, suggesting the importance of long-lived intermediates or resonances. At a translational energy, ET=0.7 eV, absolute state-selected reaction cross sections are measured for all reactant vibrational levels v+=0–17. For levels v+=0–6, the cross sections grow rapidly with vibrational quantum, above which the cross sections saturate at a value of ∼13±4 A2. At levels v+>13, the cross sections decline, probably due to competition with the dissociation channel. At a translational energy, ET=1.7 eV, absolute state-selected reaction cross sections are measur...


Journal of Chemical Physics | 2006

The study of state-selected ion-molecule reactions using the vacuum ultraviolet pulsed field ionization-photoion technique

Rainer A. Dressler; Yu-hui Chiu; Dale J. Levandier; X. N. Tang; Yu Hou; C. Chang; C. Houchins; Hong Xu; C. Y. Ng

This paper presents the methodology to generate beams of ions in single quantum states for bimolecular ion-molecule reaction dynamics studies using pulsed field ionization (PFI) of atoms or molecules in high-n Rydberg states produced by vacuum ultraviolet (VUV) synchrotron or laser photoexcitation. Employing the pseudocontinuum high-resolution VUV synchrotron radiation at the Advanced Light Source as the photoionization source, PFI photoions (PFI-PIs) in selected rovibrational states have been generated for ion-molecule reaction studies using a fast-ion gate to pass the PFI-PIs at a fixed delay with respect to the detection of the PFI photoelectrons (PFI-PEs). The fast ion gate provided by a novel interleaved comb wire gate lens is the key for achieving the optimal signal-to-noise ratio in state-selected ion-molecule collision studies using the VUV synchrotron based PFI-PE secondary ion coincidence (PFI-PESICO) method. The most recent development of the VUV laser PFI-PI scheme for state-selected ion-molecule collision studies is also described. Absolute integral cross sections for state-selected H2+ ions ranging from v+ = 0 to 17 in collisions with Ar, Ne, and He at controlled translational energies have been obtained by employing the VUV synchrotron based PFI-PESICO scheme. The comparison between PFI-PESICO cross sections for the H2+(HD+)+Ne and H2+(HD+)+He proton-transfer reactions and theoretical cross sections based on quasiclassical trajectory (QCT) calculations and three-dimensional quantum scattering calculations performed on the most recently available ab initio potential energy surfaces is highlighted. In both reaction systems, quantum scattering resonances enhance the integral cross sections significantly above QCT predictions at low translational and vibrational energies. At higher energies, the agreement between experiment and quasiclassical theory is very good. The profile and magnitude of the kinetic energy dependence of the absolute integral cross sections for the H2+(v+ = 0-2,N+ = 1)+He proton-transfer reaction unambiguously show that the inclusion of Coriolis coupling is important in quantum dynamics scattering calculations of ion-molecule collisions.


Journal of Chemical Physics | 2006

Direct identification of propargyl radical in combustion flames by vacuum ultraviolet photoionization mass spectrometry

T. Zhang; X. N. Tang; K.-C. Lau; C. Y. Ng; Christophe Nicolas; Darcy S. Peterka; Musahid Ahmed; Melita L. Morton; Branko Ruscic; Ruyi Yang; Lixia Wei; Chaoqun Huang; B. Yang; Jiajun Wang; Liusi Sheng; Yunwu Zhang; Fei Qi

We have developed an effusive laser photodissociation radical source, aiming for the production of vibrationally relaxed radicals. Employing this radical source, we have measured the vacuum ultraviolet (VUV) photoionization efficiency (PIE) spectrum of the propargyl radical (C(3)H(3)) formed by the 193 nm excimer laser photodissociation of propargyl chloride in the energy range of 8.5-9.9 eV using high-resolution (energy bandwidth = 1 meV) multibunch synchrotron radiation. The VUV-PIE spectrum of C(3)H(3) thus obtained is found to exhibit pronounced autoionization features, which are tentatively assigned as members of two vibrational progressions of C(3)H(3) in excited autoionizing Rydberg states. The ionization energy (IE = 8.674 +/- 0.001 eV) of C(3)H(3) determined by a small steplike feature resolved at the photoionization onset of the VUV-PIE spectrum is in excellent agreement with the IE value reported in a previous pulsed field ionization-photoelectron study. We have also calculated the Franck-Condon factors (FCFs) for the photoionization transitions C(3)H(3) (+)(X;nu(i),i = 1-12)<--C(3)H(3)(X). The comparison between the pattern of FCFs and the autoionization peaks resolved in the VUV-PIE spectrum of C(3)H(3) points to the conclusion that the resonance-enhanced autoionization mechanism is most likely responsible for the observation of pronounced autoionization features. We also present here the VUV-PIE spectra for the mass 39 ions observed in the VUV synchrotron-based photoionization mass spectrometric sampling of several premixed flames. The excellent agreement of the IE value and the pattern of autoionizing features of the VUV-PIE spectra observed in the photodissociation and flames studies has provided an unambiguous identification of the propargyl radical as an important intermediate in the premixed combustion flames. The discrepancy found between the PIE spectra obtained in flames and photodissociation at energies above the IE(C(3)H(3)) suggests that the PIE spectra obtained in flames might have contributions from the photoionization of vibrationally excited C(3)H(3) and/or the dissociative photoionization processes involving larger hydrocarbon species formed in flames.


Journal of Chemical Physics | 2007

A time-dependent wave packet quantum scattering study of the reaction HD+ (v = 0 - 3;j0 = 1) + He --> HeH+(HeD+) + D(H).

X. N. Tang; C. Houchins; Kai-Chung Lau; C. Y. Ng; Rainer A. Dressler; Yu-hui Chiu; Tian-Shu Chu; Ke-Li Han

Time-dependent wave packet quantum scattering (TWQS) calculations are presented for HD(+) (v = 0 - 3;j(0)=1) + He collisions in the center-of-mass collision energy (E(T)) range of 0.0-2.0 eV. The present TWQS approach accounts for Coriolis coupling and uses the ab initio potential energy surface of Palmieri et al. [Mol. Phys. 98, 1839 (2000)]. For a fixed total angular momentum J, the energy dependence of reaction probabilities exhibits quantum resonance structure. The resonances are more pronounced for low J values and for the HeH(+) + D channel than for the HeD(+) + H channel and are particularly prominent near threshold. The quantum effects are no longer discernable in the integral cross sections, which compare closely to quasiclassical trajectory calculations conducted on the same potential energy surface. The integral cross sections also compare well to recent state-selected experimental values over the same reactant and translational energy range. Classical impulsive dynamics and steric arguments can account for the significant isotope effect in favor of the deuteron transfer channel observed for HD(+)(v<3) and low translational energies. At higher reactant energies, angular momentum constraints favor the proton-transfer channel, and isotopic differences in the integral cross sections are no longer significant. The integral cross sections as well as the J dependence of partial cross sections exhibit a significant alignment effect in favor of collisions with the HD(+) rotational angular momentum vector perpendicular to the Jacobi R coordinate. This effect is most pronounced for the proton-transfer channel at low vibrational and translational energies.


Journal of Chemical Physics | 2005

Pulsed field-ionization photoelectron-photoion coincidence study of the process N2+hν→N++N+e−: Bond dissociation energies of N2 and N2+

X. N. Tang; Yu Hou; C. Y. Ng; Branko Ruscic

We have examined the dissociative photoionization reaction N2+hnu-->N++N+e- near its threshold using the pulsed field-ionization photoelectron-photoion coincidence (PFI-PEPICO) time-of-flight (TOF) method. By examining the kinetic-energy release based on the simulation of the N+ PFI-PEPICO TOF peak profile as a function of vacuum ultraviolet photon energy and by analyzing the breakdown curves of N+ and N2+, we have determined the 0-K threshold or appearance energy (AE) of this reaction to be 24.2884+/-0.0010 eV. Using this 0-K AE, together with known ionization energies of N and N2, results in more precise values for the 0-K bond dissociation energies of N-N (9.7543+/-0.0010 eV) and N-N+ (8.7076+/-0.0010 eV) and the 0-K heats of formation for N (112.469+/-0.012 kcal/mol) and N+ (447.634+/-0.012 kcal/mol).


Journal of Chemical Physics | 2007

An experimental and quasiclassical trajectory study of the rovibrationally state-selected reactions: HD+(v=0–15,j=1)+He→HeH+(HeD+)+D(H)

X. N. Tang; C. Houchins; Hong Xu; C. Y. Ng; Yu-hui Chiu; Rainer A. Dressler; Dale J. Levandier

The absolute integral cross sections for the formation of HeH+ and HeD+ from the collisions of HD+(v,j=1)+He have been examined over a broad range of vibrational energy levels v=0-13 at the center-of-mass collision energies (ET) of 0.6 and 1.4 eV using the vacuum ultraviolet (VUV) pulsed field ionization photoelectron secondary ion coincidence method. The ET dependencies of the integral cross sections for products HeH+ and HeD+ from HD+(v=0-4)+He collisions in the ET range of 0-3 eV have also been measured using the VUV photoionization guided ion beam mass spectrometric technique, in which vibrationally selected HD+(v) reactant ions were prepared via excitation of selected autoionization resonances of HD. At low total energies, a pronounced isotope effect is observed in absolute integral cross sections for the HeH++D and HeD++H channels with significant favoring of the deuteron transfer channel. As v is increased in the range of v=0-9, the integral cross sections of the HeH++D channel are found to approach those of HeD++H. The observed velocity distributions of products HeD+ and HeH+ are consistent with an impulsive or spectator-stripping mechanism. Detailed quasiclassical trajectory (QCT) calculations are also presented for HD+(v,j=1)+He collisions at the same energies of the experiment. The QCT calculations were performed on the most accurate ab initio potential energy surface available. If the zero-point energy of the reaction products is taken into account, the QCT cross sections for products HeH+ and HeD+ from HD+(v)+He are found to be significantly lower than the experimental results at ET values near the reaction thresholds. The agreement between the experimental and QCT cross sections improves with translational energy. Except for prethreshold reactivity, QCT calculations ignoring the zero-point energy in the products are generally in good agreement with experimental absolute cross sections. The experimental HeH+/HeD+ branching ratios for the HD+(v=0-9)+He collisions are generally consistent with QCT predictions. The observed isotope effects can be rationalized on the basis of differences in thermochemical thresholds and angular momentum conservation constraints.


Journal of Chemical Physics | 2005

Pulsed Field-Ionization Photoelectron-photoion Coincidence Studyof the Process N2+H nu -->N+ + N + e-: Bond Dissociation Energies ofN2 and N+2

X. N. Tang; Yu Hou; C. Y. Ng; Branko Ruscic

We have examined the dissociative photoionization reaction N2+hnu-->N++N+e- near its threshold using the pulsed field-ionization photoelectron-photoion coincidence (PFI-PEPICO) time-of-flight (TOF) method. By examining the kinetic-energy release based on the simulation of the N+ PFI-PEPICO TOF peak profile as a function of vacuum ultraviolet photon energy and by analyzing the breakdown curves of N+ and N2+, we have determined the 0-K threshold or appearance energy (AE) of this reaction to be 24.2884+/-0.0010 eV. Using this 0-K AE, together with known ionization energies of N and N2, results in more precise values for the 0-K bond dissociation energies of N-N (9.7543+/-0.0010 eV) and N-N+ (8.7076+/-0.0010 eV) and the 0-K heats of formation for N (112.469+/-0.012 kcal/mol) and N+ (447.634+/-0.012 kcal/mol).


Journal of Chemical Physics | 2005

H2+(X,v+=0~15,N+=1)+Heプロトン移動反応のパルス電界イオン化光電子二次イオンコインシデンス研究

X. N. Tang; Hong Xu; Tejia Zhang; Yu Hou; C. Chang; C. Y. Ng; Yu-hui Chiu; Rainer A. Dressler; Dale J. Levandier

Collaboration


Dive into the X. N. Tang's collaboration.

Top Co-Authors

Avatar

C. Y. Ng

University of California

View shared research outputs
Top Co-Authors

Avatar

Rainer A. Dressler

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Xu

University of California

View shared research outputs
Top Co-Authors

Avatar

Yu Hou

University of California

View shared research outputs
Top Co-Authors

Avatar

Yu-hui Chiu

Air Force Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

C. Houchins

University of California

View shared research outputs
Top Co-Authors

Avatar

Branko Ruscic

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

C. Chang

University of California

View shared research outputs
Top Co-Authors

Avatar

Tejia Zhang

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge