Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where X.T. Liu is active.

Publication


Featured researches published by X.T. Liu.


Poultry Science | 2016

Effects of dietary Lactobacillus plantarum B1 on growth performance, intestinal microbiota, and short chain fatty acid profiles in broiler chickens

Q. Peng; Xiangfang Zeng; Jinlong Zhu; Shuai Wang; X.T. Liu; Chengli Hou; P. A. Thacker; Shiyan Qiao

Two experiments were conducted to determine the effects of Lactobacillus plantarum B1 on broiler performance, cecal bacteria, and ileal and cecal short chain fatty acids (SCFA). The study also determined whether it was necessary to feed Lactobacillus throughout the entire growth period or if the beneficial effects could be obtained by supplementation during the starter or finisher period only. Experiment 1 was conducted with 72 broilers assigned to 2 treatments (N=6). One treatment was the basal diet (Con), and the other was the basal diet supplemented with 2×10(9) cfu/kg L. plantarum B1 (Wh). In experiment 2, 144 one-day-old broilers were assigned to 4 treatments (N=6) including a basal diet (Con), the basal diet supplemented with 2×10(9) cfu/kgL. plantarum B1 during d one to 21 only (St), the basal diet supplemented with L. plantarum B1 during d 22 to 42 only (Fn), and, finally, the basal diet supplemented with L. plantarum B1 from d one to 42 (Wh). Experiment 1 showed that L. plantarum B1 enhanced broiler average daily gain (ADG) and feed conversion ratio (FCR). In experiment 2, during the starter period, broilers in the Wh and St treatments had higher ADG (P<0.05) than broilers in the Con and Fn, while during the finisher period, broilers in the Wh and Fn had higher ADG (P<0.01) and improved FCR (P<0.01) compared with broilers in the Con and St. On d 42, broilers in the Wh and Fn had decreased E. coli (P<0.05) and increased lactic acid bacteria (P<0.05) in their cecal digesta. L. plantarum B1 also increased (P<0.05) ileal mucosal sIgA as well as ileal and cecal SCFA. However, L. plantarum B1 had no effect on intestinal morphology. In conclusion,L. plantarum B1 plays a positive role in broilers. Supplementation during the finisher period or the entire growth period is superior to supplementation during the starter period only.


Journal of Applied Microbiology | 2014

Superoxide dismutase recombinant Lactobacillus fermentum ameliorates intestinal oxidative stress through inhibiting NF‐κB activation in a trinitrobenzene sulphonic acid‐induced colitis mouse model

Chengli Hou; Jiang Zhang; X.T. Liu; Hong Liu; Xiangfang Zeng; Shiyan Qiao

Superoxide dismutase (SOD) can prevent and cure inflammatory bowel diseases by decreasing the amount of reactive oxygen species. Unfortunately, short half‐life of SOD in the gastrointestinal tract limited its application in the intestinal tract. This study aimed to investigate the treatment effects of recombinant SOD Lactobacillus fermentum in a colitis mouse model.


Journal of Agricultural and Food Chemistry | 2016

Different Lipopolysaccharide Branched-Chain Amino Acids Modulate Porcine Intestinal Endogenous β-Defensin Expression through the Sirt1/ERK/90RSK Pathway

Man Ren; Shihai Zhang; X.T. Liu; Shenghe Li; Xiangbing Mao; Xiangfang Zeng; Shiyan Qiao

Nutritional induction of endogenous antimicrobial peptide expression is considered a promising approach to inhibit the outgrowth and infection of pathogenic microbes in mammals. The present study investigated possible regulation of porcine epithelial β-defensins in response to branched-chain amino acids (BCAA) in vivo and in vitro. BCAA treatment increased relative mRNA expression of jejunal and ileal β-defensins in weaned piglets. In IPEC-J2 cells, isoleucine, leucine, and valine could stimulate β-defensin expression, possibly associated with stimulation of ERK1/2 phosphorylation. Inhibition of Sirt1 and ERK completely blocked the activation of ERK and 90RSK protein by isoleucine, simultaneously decreasing defensin expression. BCAA stimulate expression of porcine intestinal epithelial β-defensins with isoleucine the most, potent possibly through activation of the Sirt1/ERK/90RSK signaling pathway. The β-defensins regulation of lipopolysaccharide was related with an ERK-independent pathway. BCAA modulation of endogenous defensin might be a promising approach to enhance disease resistance and intestinal health in young animals and children.


Journal of Animal Science | 2015

Estimation of the standardized ileal digestible valine to lysine ratio required for 25- to 120-kilogram pigs fed low crude protein diets supplemented with crystalline amino acids.

X.T. Liu; W. F. Ma; Xiangfang Zeng; Chunyuan Xie; P. A. Thacker; J. K. Htoo; Shiyan Qiao

Four 28-d experiments were conducted to determine the standardized ileal digestible (SID) valine (Val) to lysine (Lys) ratio required for 26- to 46- (Exp. 1), 49- to 70- (Exp. 2), 71- to 92- (Exp. 3), and 94- to 119-kg (Exp. 4) pigs fed low CP diets supplemented with crystalline AA. The first 3 experiments utilized 150 pigs (Duroc × Landrace × Large White), while Exp. 4 utilized 90 finishing pigs. Pigs in all 4 experiments were randomly allocated to 1 of 5 diets with 6 pens per treatment (3 pens of barrows and 3 pens of gilts) and 5 pigs per pen for the first 3 experiments and 3 pigs per pen for Exp. 4. Diets for all experiments were formulated to contain SID Val to Lys ratios of 0.55, 0.60, 0.65, 0.70, or 0.75. In Exp. 1 (26 to 46 kg), ADG increased (linear, = 0.039; quadratic, = 0.042) with an increasing dietary Val:Lys ratio. The SID Val:Lys ratio to maximize ADG was 0.62 using a linear broken-line model and 0.71 using a quadratic model. In Exp. 2 (49 to 70 kg), ADG increased (linear, = 0.021; quadratic, = 0.042) as the SID Val:Lys ratio increased. G:F improved (linear, = 0.039) and serum urea nitrogen (SUN) decreased (linear, = 0.021; quadratic, = 0.024) with an increased SID Val:Lys ratio. The SID Val:Lys ratios to maximize ADG as well as to minimize SUN levels were 0.67 and 0.65, respectively, using a linear broken-line model and 0.72 and 0.71, respectively, using a quadratic model. In Exp. 3 (71 to 92 kg), ADG increased (linear, = 0.007; quadratic, = 0.022) and SUN decreased (linear, = 0.011; quadratic, = 0.034) as the dietary SID Val:Lys ratio increased. The SID Val:Lys ratios to maximize ADG as well as to minimize SUN levels were 0.67 and 0.67, respectively, using a linear broken-line model and 0.72 and 0.74, respectively, using a quadratic model. In Exp. 4 (94 to 119 kg), ADG increased (linear, = 0.041) and G:F was improved (linear, = 0.004; quadratic, = 0.005) as the dietary SID Val:Lys ratio increased. The SID Val:Lys ratio to maximize G:F was 0.68 using a linear broken-line model and 0.72 using a quadratic model. Carcass traits and muscle quality were not influenced by SID Val:Lys ratio. In conclusion, the dietary SID Val:Lys ratios required for 26- to 46-, 49- to 70-, 71- to 92-, and 94- to 119-kg pigs were estimated to be 0.62, 0.66, 0.67, and 0.68, respectively, using a linear broken-line model and 0.71, 0.72, 0.73, and 0.72, respectively, using a quadratic model.


Journal of Animal Science | 2015

The appropriate standardized ileal digestible tryptophan to lysine ratio improves pig performance and regulates hormones and muscular amino acid transporters in late finishing gilts fed low-protein diets.

W. F. Ma; Shihai Zhang; Xiangfang Zeng; X.T. Liu; Chunyuan Xie; G.J. Zhang; Shiyan Qiao

This study investigated the effects of various standardized ileal digestible (SID) Trp to Lys ratios on the performance and carcass characteristics of late finishing gilts receiving low-CP (9.6%) diets supplemented with crystalline AA. Ninety gilts (89.1 ± 5.1 kg) were used in a dose-response study conducted for 35 d. Crystalline Trp (0, 0.1, 0.2, 0.4, or 0.6 g/kg) was added to a corn-wheat bran basal diet providing SID Trp to Lys ratios of 0.12, 0.15, 0.18, 0.21, or 0.24. Each diet was fed to 6 pens of pigs with 3 gilts per pen. At the end of the experiment, 30 gilts (1 pig per pen) were slaughtered to evaluate carcass traits and meat quality (BW = 121 kg). Increasing the SID Trp to Lys ratio increased ADG (linear and quadratic effect, < 0.05) and also improved G:F (linear and quadratic effect, < 0.05). Serum urea nitrogen (SUN) decreased as the SID Trp to Lys ratio increased (linear and quadratic effects, < 0.05). A quadratic effect of L* light and marbling in the longissimus dorsi was observed as the dietary SID Trp to Lys ratio increased ( < 0.05). Increasing the SID Trp to Lys ratio increased the level of serum GH (quadratic effect, < 0.05) and also increased the level of serum IGF-1 (linear and quadratic effect, < 0.05). Increasing the SID Trp to Lys ratio increased the protein abundance of the muscular AA transporter of sodium-coupled neutral amino acid transporter 2 (SNAT2) in the longissimus dorsi muscle (linear and quadratic effect, < 0.05). The optimum SID Trp to Lys ratios to maximize ADG and G:F as well as to minimize SUN levels were 0.16, 0.17, and 0.16 using a linear-breakpoint model and 0.20, 0.20, and 0.20 using a quadratic model. Tryptophan could influence serum GH and IGF-1 secretion and protein abundance of the muscular AA transporter of SNAT2 in the longissimus dorsi muscle in late finishing gilts fed low-protein diets.


Letters in Applied Microbiology | 2014

Fermentation conditions influence the fatty acid composition of the membranes of Lactobacillus reuteri I5007 and its survival following freeze‐drying

X.T. Liu; Chengli Hou; Jiang Zhang; Xiangfang Zeng; Shiyan Qiao

Lactobacillus reuteri I5007 has well‐documented adhesion properties and health benefits. Future industrial use of Lact. reuteri I5007 will require the development of effective fermentation procedures and high bacterial survival following drying. Therefore, this study was conducted to determine the impact of altering fermentation pH and temperature on the fatty acid composition of the bacterial membranes and subsequent survival of Lact. reuteri I5007 following freeze‐drying. Initially, a response surface methodology was used to determine the optimal fermentation pH (5·7) and temperature (37°C), with regard to producing the maximum number of Lact. reuteti I5007 cells. However, when subjected to the optimal fermentation pH and temperature (control treatment), the subsequent survival of Lact. reuteri I5007 following freeze‐drying was only 12·95%. Growth at a higher temperature (47°C) or at a neutral pH (pH 6·7) significantly increased the survival of Lact. reuteri I5007 following freeze‐drying compared with the control. In contrast, an acidic pH (pH 4·7), or cold (27°C) and extremely cold (4°C) temperatures during fermentation significantly reduced Lact. reuteri I5007 survival following freeze‐drying. The fatty acid composition of the membranes of Lact. reuteri I5007 was altered by the different fermentation conditions tested. An increase in the ratio of unsaturated fatty acids (UFA) to saturated fatty acids (SFA) in the bacterial membrane was associated with higher survival of Lact. reuteri I5007. In conclusion, it appears that the use of a higher temperature (47°C) or neutral pH (6·7) during fermentation resulted in increased survival of Lact. reuteri I5007 following freeze‐drying.


Poultry Science | 2017

Prevention of Escherichia coli infection in broiler chickens with Lactobacillus plantarum B1

Shuai Wang; Q. Peng; H. M. Jia; Xiangfang Zeng; Jinlong Zhu; Chengli Hou; X.T. Liu; F. J. Yang; Shiyan Qiao

&NA; Two studies were performed to assess the efficacy of Lactobacillus plantarum B1 in prevention of pathogenic Escherichia coli K88 gastrointestinal infection in broilers. In an in vitro study, L. plantarum B1 showed resistance to acid and bile and inhibited the growth of E. coli K88. Additionally, L. plantarum B1 exhibited high ability to adhere to broiler embryo ileal epithelium. In an animal trial, 240 broilers at 1 d of age were randomly assigned to one of 4 treatment arms: negative control (NC) broilers fed a basal diet and not challenged; positive control (PC) broilers fed a basal diet and challenged with E. coli K88; L. plantarum (LP) treatment broilers fed a basal diet containing 2 × 109 cfu/kg L. plantarum B1 and challenged with E. coli K88; and antibiotic treatment (Anti) broilers fed a basal diet supplemented with colistin sulfate (20 mg/kg) and challenged with E. coli K88. Broilers fed L. plantarum B1 had greater (P ≤ 0.05) BW than those in the PC treatment on d 14 and 28. Dietary L. plantarum B1 decreased (P < 0.05) E. coli counts in the cecal contents on d 10 and 14, and increased (P < 0.05) cecal lactic acid bacteria (LAB) on d 8, 10, 14, and 28 compared with the PC treatment. Dietary supplementation of L. plantarum B1 increased (P < 0.05) the ileal mucosal secretory IgA concentration and reduced (P < 0.05) IL‐2, IL‐4, IFN‐&ggr;, and tumor necrosis factor‐&agr; levels in the ileum. Overall, these results suggest dietary supplementation of L. plantarum B1 promotes growth performance, lowers cecal E. coli counts, and increases the population of cecal LAB, as well as improves intestinal mucosal immunity in E. coli K88‐challenged broilers.


Journal of Agricultural and Food Chemistry | 2018

Valine Supplementation in a Reduced Protein Diet Regulates Growth Performance Partially through Modulation of Plasma Amino Acids Profile, Metabolic Responses, Endocrine, and Neural Factors in Piglets

Xiaoya Zhang; X.T. Liu; Hongmin Jia; Pingli He; Xiangbing Mao; Shiyan Qiao; Xiangfang Zeng

The objective of this study was to investigate whether valine (Val) supplementation in a reduced protein (RP) diet regulates growth performance associated with the changes in plasma amino acids (AAs) profile, metabolism, endocrine, and neural system in piglets. Piglets or piglets with a catheter in the precaval vein were randomly assigned to two treatments, including two RP diets with standardized ileal digestible (SID) Val:Lysine (Lys) ratio of 0.45 and 0.65, respectively. The results indicated that piglets in the higher Val:Lys ratio treatment had higher average daily feed intake (ADFI) ( P < 0.001), average daily gain (ADG) ( P = 0.001), feed conversion ratio (FCR) ( P = 0.004), lower plasma urea nitrogen ( P = 0.032), expression of gastric cholecystokinin (CCK), and hypothalamic pro-opiomelanocortin (POMC). Plasma AAs profiles including postprandial plasma essential AAs (EAAs) profile and in serum, muscle, and liver involved in metabolism of AAs and fatty acids were significantly different between two treatments. In conclusion, Val influenced growth performance associated with metabolism of AAs and fatty acids and both endocrine and neural system in piglets.


Animal Science Journal | 2016

Estimation of the optimum standardized ileal digestible total sulfur amino acid to lysine ratio in late finishing gilts fed low protein diets supplemented with crystalline amino acids

Wenfeng Ma; Jinlong Zhu; Xiangfang Zeng; X.T. Liu; P. A. Thacker; Shiyan Qiao

A total of 90 gilts were used to investigate the effects of various standard ileal digestible (SID) total sulfur amino acid (TSAA) to lysine (Lys) ratios on the performance and carcass characteristics of late finishing gilts receiving low crude protein (CP) diets supplemented with crystalline amino acids (CAA). Graded levels of crystalline methionine (Met) (0, 0.3, 0.5, 0.8 or 1.1 g/kg) were added to the basal diet to produce diets providing SID TSAA to Lys ratios of 0.48, 0.53, 0.58, 0.63 or 0.68. At the termination of the experiment, 30 gilts (one pig per pen) with an average body weight (BW) of 120 kg were killed to evaluate carcass traits. Increasing the SID TSAA to Lys ratio increased average daily gain (ADG) (linear and quadratic effect, P < 0.05), improved feed conversion ratio (FCR) (linear and quadratic effect, P < 0.05) and decreased serum urea nitrogen (SUN) concentration (linear and quadratic effect, P < 0.05) of finishing gilts. No effects were obtained for carcass traits. The optimum SID TSAA to Lys ratios to maximize ADG as well as to minimize FCR and SUN levels were 0.57, 0.58 and 0.53 using a linear-break point model and 0.64, 0.62 and 0.61 using a quadratic model.


Journal of Animal Science | 2017

Technical note: Characterization of lipid constitution in Fourier transform infrared spectra and spectroscopic discrimination of animal-derived feedstuffs from different species

Fei Gao; Lujia Han; Zengling Yang; L. Xu; X.T. Liu

The objective of the current work was to assess the capability of Fourier transform infrared (FT-IR) spectroscopy in combination with chemometric methods to discriminate animal-derived feedstuffs from different origins based on the lipid characteristics. A total of 82 lipid samples extracted from animal-derived feedstuffs, comprising porcine, poultry, bovine, ovine, and fish samples, were investigated by gas chromatography and FT-IR. The relationship between the lipid constitutions and the responding FT-IR spectral characteristics were explored. Results indicated that high correlations ( > 0.900) were found between the contents of MUFA and PUFA and FT-IR spectral data. In addition, the peak intensity at about 1,116 and 1,098 cm-1 showed a significant difference ( < 0.05) between ruminant and nonruminant animals; the change of peak ratio (1,116:1,098) was proved consistent with the degree of unsaturation of lipid from different animal species. Successful discrimination was further achieved among porcine, poultry, bovine, and ovine meat and bone meal (MBM) and fishmeal based on lipid characteristics by applying the FT-IR spectra coupled with chemometrics, for which the values of sensitivity and specificity were close to 1 and classification error were almost equal to 0.

Collaboration


Dive into the X.T. Liu's collaboration.

Top Co-Authors

Avatar

Shiyan Qiao

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiangfang Zeng

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Chengli Hou

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Chunyuan Xie

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

G.J. Zhang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jinlong Zhu

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shihai Zhang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

W. F. Ma

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

P. A. Thacker

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Jiang Zhang

China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge