Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where X.Z. Gong is active.

Publication


Featured researches published by X.Z. Gong.


Nuclear Fusion | 2011

Study on H-mode access at low density with lower hybrid current drive and lithium-wall coatings on the EAST superconducting tokamak

Guosheng Xu; B.N. Wan; J.G. Li; X.Z. Gong; Jiansheng Hu; Jiafang Shan; Hong Li; D.K. Mansfield; D.A. Humphreys; V. Naulin

The first high-confinement mode (H-mode) with type-III edge localized modes at an H factor of HIPB98(y,2) ∼ 1 has been obtained with about 1 MW lower hybrid wave power on the EAST superconducting tokamak. The first H-mode plasma appeared after wall conditioning by lithium (Li) evaporation before plasma breakdown and the real-time injection of fine Li powder into the plasma edge. The threshold power for H-mode access follows the international tokamak scaling even in the low density range and a threshold in density has been identified. With increasing accumulation of deposited Li the H-mode duration was gradually extended up to 3.6 s corresponding to ∼30 confinement times, limited only by currently attainable durations of the plasma current flat top. Finally, it was observed that neutral density near the lower X-point was progressively reduced by a factor of 4 with increasing Li accumulation, which is considered the main mechanism for the H-mode power threshold reduction by the Li wall coatings. (Some figures in this article are in colour only in the electronic version)


Nuclear Fusion | 2015

Advances in H-mode physics for long-pulse operation on EAST

B.N. Wan; Jiangang Li; H.Y. Guo; Y. Liang; Guosheng Xu; Liang Wang; X.Z. Gong

Since the 2012 International Atomic Energy Agency Fusion Energy Conference (IAEA-FEC), significant advances in both physics and technology has been made on the Experimental Advanced Superconducting Tomakak (EAST) toward a long-pulse stable high-confinement (H-mode) plasma regime. The experimental capabilities of EAST have been technically upgraded with the power enhancement (source power up to 26 MW) of the continuous-wave heating and current drive system, replacement of the upper graphite divertor with an ITER-like W monoblock divertor, and installation of a new internal cryopump in the upper divertor and a set of 16 in-vessel resonant magnetic perturbation (RMP) coils. This new upgrade enables EAST to be a unique operating device capable of investigating ITER-relevant long-pulse high-performance operations with dominant electron heating and low torque input within the next 5 years. Remarkable physics progress in controlling transient and steady-state divertor heat fluxes has been achieved on EAST, e.g. (i) edge-localized mode (ELM) mitigation/suppression with a number of attractive methods including lower hybrid wave (LHW), supersonic molecular beam injection (SMBI), RMPs, and real-time Li aerosol injection; and (ii) active control of steady-state power distribution by the synergy of LHW and SMBI. In the 2014 experimental campaign, a long-pulse high-performance H-mode plasma with H98 ~ 1.2 has been obtained with a duration over 28 s (~200 times the energy confinement time). In addition, several new experimental advances have been achieved in the last EAST campaign, including: (i) high-performance H-mode with βN ~ 2 and stored plasma energy ~220 kJ; (ii) H-mode plasma sustained by neutral beam injection (NBI) alone or modulated NBI with lower hybrid current drive (LHCD), for the first time in EAST; (iii) high current drive efficiency and nearly full noninductive plasmas maintained by the new 4.6 GHz LHCD system; (iv) demonstration of a quasi-snowflake divertor configuration; and (v) observation of a new edge-coherent mode and its effects on edge transport in H-mode plasmas.


Nuclear Fusion | 2013

First observations of ELM triggering by injected lithium granules in EAST

D.K. Mansfield; A.L. Roquemore; T. Carroll; Z. Sun; J.S. Hu; Linjuan Zhang; Y. Liang; X.Z. Gong; J.G. Li; H.Y. Guo; G.Z. Zuo; P.B. Parks; W. Wu; R. Maingi

The first results of edge-localized mode (ELM) pacing using small spherical lithium granules injected mechanically into H-mode discharges are reported. Triggering of ELMs was accomplished using a simple rotating impeller to inject sub-millimetre size granules at speeds of a few tens of meters per second into the outer midplane of the EAST fusion device. During the injection phase, ELMs were triggered with near 100% efficiency and the amplitude of the induced ELMs as measured by Dα was clearly reduced compared to contemporaneous naturally occurring ELMs. In addition, a wide range of granule penetration depths was observed. Moreover, a substantial fraction of the injected granules appeared to penetrate up to 50% deeper than the 3 cm nominal EAST H-mode pedestal width. The observed granule penetration was, however, less deep than suggested by ablation modelling carried out after the experiment. The observation that ELMs can be triggered using the injection of something other than frozen hydrogenic pellets allows for the contemplation of lithium or beryllium-based ELM pace-making on future fusion devices. This change in triggering paradigm would allow for the decoupling of the ELM-triggering process from the plasma-fuelling process which is currently a limitation on the performance of hydrogen-based ELM mitigation by injected pellets.


Nuclear Fusion | 2014

Approaches towards long-pulse divertor operations on EAST by active control of plasma–wall interactions

H.Y. Guo; Jiangang Li; X.Z. Gong; Baonian Wan; J.S. Hu; Lianzhou Wang; H. Q. Wang; J. Menard; M.A. Jaworski; Kaifu Gan; Shaojin Liu; Guosheng Xu; S. Ding; Liqun Hu; Y. Liang; J.B. Liu; Guang-Nan Luo; H. Si; D.S. Wang; Zhiwei Wu; L.Y. Xiang; B.J. Xiao; Linjuan Zhang; X.L. Zou; D. L. Hillis; A. Loarte; R. Maingi

The Experimental Advanced Superconducting Tokamak (EAST) has demonstrated, for the first time, long-pulse divertor plasmas over 400 s, entirely driven by lower hybrid current drive (LHCD), and further extended high-confinement plasmas, i.e. H-modes, over 30 s with predominantly LHCD and advanced lithium wall conditioning. Many new and exciting physics results have been obtained in the quest for long-pulse operations. The key findings are as follows: (1) access to H-modes in EAST favours the divertor configuration with the ion ∇B drift directed away from the dominant X-point; (2) divertor asymmetry during edge-localized modes (ELMs) also appears to be dependent on the toroidal field direction, with preferential particle flow opposite to the ion ∇B drift; (3) LHCD induces a striated heat flux (SHF), enhancing heat deposition away from the strike point, and the degree of SHF can be modified by supersonic molecule beam injection; (4) the long-pulse H-modes in EAST exhibit a confinement quality between type-I and type-III ELMy H-modes, with H98(y,2) ~ 0.9, similar to type-II ELMy H-modes.


Nuclear Fusion | 2013

Characterizations of power loads on divertor targets for type-I, compound and small ELMs in the EAST superconducting tokamak

Lianzhou Wang; Guosheng Xu; H.Y. Guo; H. Q. Wang; Shaojin Liu; Kaifu Gan; X.Z. Gong; Y. Liang; Ning Yan; L. Chen; J.B. Liu; W. Zhang; R. Chen; L.M. Shao; H. Xiong; J. Qian; B. Shen; G.J. Liu; R. Ding; Xiaotao Zhang; C.M. Qin; S. Ding; L.Y. Xiang; G. H. Hu; Zhiwei Wu; Guang-Nan Luo; Jianing Chen; Liqun Hu; X. Gao; Baonian Wan

The Experimental Advanced Superconducting Tokamak (EAST) has recently achieved a variety of H-mode regimes with different edge-localized mode (ELM) dynamics, including type-I ELMs, compound ELMs, which are manifested by the onset of a large spike followed by a sequence of small spikes on Dα emissions, usual type-III ELMs, and very small ELMs. This newly observed very small ELMy H-mode appears to be similar to the type-II ELMy H-mode, with higher repetition frequency (~1 kHz) and lower amplitude than the type-III ELMy H-mode, exhibiting an intermediate confinement level between type-I and type-III ELMy H-modes. The energy loss and divertor power load are systematically characterized for these different ELMy H-modes to provide a physics basis for the next-step high-power long-pulse operations in EAST. Both type-I and compound ELMs exhibit good confinement (H98(y,2) ~ 1). A significant loss of the plasma stored energy occurs at the onset of type-I ELMs (~8%) and compound ELMs (~5%), while no noticeable change in the plasma stored energy is observed for the small ELMs, including both type-III ELMs and very small ELMs. The peak heat flux on divertor targets for type-I ELMs currently achieved in EAST is about 10 MW m−2, as determined from the divertor-embedded triple Langmuir probe system with high time resolution. As expected, type-III ELMs lead to much smaller divertor power loads with a peak heat flux of about 2 MW m−2. Peak power loads for compound ELMs are between those for type-I and type-III ELMs. It is remarkable that the new very small ELMy H-modes exhibit even lower target power deposition than type-III ELMs, with the peak heat flux generally below 1 MW m−2. These very small ELMs are usually accompanied by broadband fluctuations with frequencies ranging from 20 to 50 kHz, which may promote particle and power exhaust throughout the very small ELMy H-mode regime.


Nuclear Fusion | 2013

Experimental investigations of LHW?plasma coupling and current drive related to achieving H-mode plasmas in EAST

B. J. Ding; E.H. Kong; M. H. Li; Lei Zhang; W. Wei; M. Wang; Handong Xu; Y. C. Li; Bili Ling; Qing Zang; Gang Xu; Xiang Han; H.L. Zhao; Ling Zhang; L.M. Zhao; Huaichuan Hu; Yitao Yang; L. Liu; A. Ekedahl; M. Goniche; R. Cesario; Y. Peysson; J. Decker; V. Basiuk; P. Huynh; J. Artaud; F. Imbeaux; Jiafang Shan; Fukun Liu; Yanping Zhao

Aimed at high-confinement (H-mode) plasmas in the Experimental Advanced Superconducting Tokamak (EAST), the effect of local gas puffing from electron and ion sides of a lower hybrid wave (LHW) antenna on LHW?plasma coupling and high-density experiments with lower hybrid current drive (LHCD) are investigated in EAST. Experimental results show that gas puffing from the electron side is more favourable to improve coupling compared with gas puffing from the ion side. Investigations indicate that LHW?plasma coupling without gas puffing is affected by the density near the LHW grill (grill density), hence leading to multi-transition of low?high?low (L?H?L) confinement, with a correspondingly periodic characteristic behaviour in the plasma radiation. High-density experiments with LHCD suggest that strong lithiation gives a significant improvement on current drive efficiency in the higher density region than 2???1019?m?3. Studies indicate that the sharp decrease in current drive efficiency is mainly correlated with parametric decay instability.Using lithium coating and gas puffing from the electron side of the LHW antenna, an H-mode plasma is obtained by LHCD in a wide range of parameters, whether LHW is deposited inside the half-minor radius or not, implying that a central and large driven current is not a necessary condition for the H-mode plasma. H-mode is investigated with CRONOS.


Nuclear Fusion | 2013

First results from H-mode plasmas generated by ICRF heating in the EAST

Xiaotao Zhang; Yanping Zhao; Bo Wan; X.Z. Gong; J.G. Li; Y. Lin; C.M. Qin; G. Taylor; Gang Xu; Y. W. Sun; B.X. Gao; J. Qian; F.D. Wang; B. Lu; C. Luo; Linjuan Zhang; Liqun Hu; Yong Song; C. X. Yu; W. D. Liu; S.J. Wukitch; J. R. Wilson; J. C. Hosea

Deuterium high-confinement (H-mode) plasmas, lasting up to 3.45 s, have been generated in the EAST by ion cyclotron range of frequency (ICRF) heating. H-mode access was achieved by coating the molybdenum-tiled first wall with lithium to reduce the hydrogen recycling from the wall. H-mode plasmas with plasma currents between 0.4 and 0.6 MA and axial toroidal magnetic fields between 1.85 and 1.95 T were generated by 27 MHz ICRF heating of deuterium plasma with hydrogen minority. The ICRF input power required to access the H-mode was 1.6–1.8 MW. The line-averaged density was in the range (1.83–2.3) × 1019 m−3. 200–500 Hz type-III edge localized mode activity was observed during the H-mode phase. The H-mode confinement factor, H98IPB(y, 2), was ~0.7.


Nuclear Fusion | 2012

Particle and power deposition on divertor targets in EAST H-mode plasmas

Lianzhou Wang; Guosheng Xu; H.Y. Guo; R. Chen; S. Ding; Kaifu Gan; X. Gao; X.Z. Gong; M. Jiang; Pengfei Liu; Songlin Liu; Guang-Nan Luo; Tingfeng Ming; B.N. Wan; D.S. Wang; F.M. Wang; H. Q. Wang; Zhiwei Wu; N. Yan; Linjuan Zhang; W. Zhang; Xiaotao Zhang; Sizheng Zhu

The effects of edge-localized modes (ELMs) on divertor particle and heat fluxes were investigated for the first time in the Experimental Advanced Superconducting Tokamak (EAST). The experiments were carried out with both double null and lower single null divertor configurations, and comparisons were made between the H-mode plasmas with lower hybrid current drive (LHCD) and those with combined ion cyclotron resonance heating (ICRH). The particle and heat flux profiles between and during ELMs were obtained from Langmuir triple-probe arrays embedded in the divertor target plates. And isolated ELMs were chosen for analysis in order to reduce the uncertainty resulting from the influence of fast electrons on Langmuir triple-probe evaluation during ELMs. The power deposition obtained from Langmuir triple probes was consistent with that from the divertor infra-red camera during an ELM-free period. It was demonstrated that ELM-induced radial transport predominantly originated from the low-field side region, in good agreement with the ballooning-like transport model and experimental results of other tokamaks. ELMs significantly enhanced the divertor particle and heat fluxes, without significantly broadening the SOL width and plasma-wetted area on the divertor target in both LHCD and LHCD + ICRH H-modes, thus posing a great challenge for the next-step high-power, long-pulse operation in EAST. Increasing the divertor-wetted area was also observed to reduce the peak heat flux and particle recycling at the divertor target, hence facilitating long-pulse H-mode operation. The particle and heat flux profiles during ELMs appeared to exhibit multiple peak structures, and were analysed in terms of the behaviour of ELM filaments and the flux tubes induced by modified magnetic topology during ELMs.


Nuclear Fusion | 2012

Initial results on plasma heating experiments in the ion cyclotron range of frequencies on EAST

Xiaotao Zhang; Yanping Zhao; Baonian Wan; X.Z. Gong; Yuzhou Mao; S. Yuan; Dy Xue; Lianzhou Wang; C.M. Qin; Sq Ju; Y Chen; J. Qian; Liqun Hu; J.G. Li; Yong Song; Y Lin; S. Wukitch; Jean-Marie Noterdaeme; R Kumazawa; T Seki; K. Saito; H. Kasahara

Plasma heating using fast waves was successfully performed on the Experimental Advanced Superconducting Tokamak (EAST) in the H minority regime in deuterium plasmas at 27MHz and B-o = 2.0 T. With 1.0 MW of ion cyclotron range of frequency (ICRF) power injected at a line-averaged electron density of 4.0 x 10(19) m(-3), the electron temperature increased from 1.0 keV to above 2.0 keV and the loop voltage dropped. An increase in the stored energy by 30 kJ was obtained. The first H-mode plasma of 6.4 s was achieved with a combination of lower hybrid wave and ICRF heating. Density pump-out was observed during L-mode discharges at a high electron density of 4.0 x 10(19) m(-3). In these discharges, re-attachment of the plasma was observed when ICRF power was applied.


Nuclear Fusion | 2014

Study of the L–I–H transition with a new dual gas puff imaging system in the EAST superconducting tokamak

Guosheng Xu; L. M. Shao; Shaojin Liu; H. Q. Wang; B.N. Wan; H.Y. Guo; P. H. Diamond; G. R. Tynan; M. Xu; Stewart J. Zweben; V. Naulin; Anders Henry Nielsen; J. Juul Rasmussen; N. Fedorczak; P. Manz; K. Miki; N. Yan; R. Chen; Bingqiang Cao; L. Chen; Lianzhou Wang; W. Zhang; X.Z. Gong

The intermediate oscillatory phase during the L–H transition, termed the I-phase, is studied in the EAST superconducting tokamak using a newly developed dual gas puff imaging (GPI) system near the L–H transition power threshold. The experimental observations suggest that the oscillatory behaviour appearing at the L–H transition could be induced by the synergistic effect of the two components of the sheared m, n = 0 E × B flow, i.e. the turbulence-driven zonal flow (ZF) and the equilibrium flow. The latter arises from the equilibrium, and is, to leading order, balanced by the ion diamagnetic term in the radial force balance equation. A slow increase in the poloidal flow and its shear at the plasma edge are observed tens of milliseconds prior to the I-phase. During the I-phase, the turbulence recovery appears to originate from the vicinity of the separatrix with clear wave fronts propagating both outwards into the far scrape-off layer (SOL) and inwards into the core plasma. The turbulence Reynolds stress is directly measured using the GPI system during the I-phase, providing direct evidence of kinetic energy transfer from turbulence to ZFs at the plasma edge. The GPI observations strongly suggest that the SOL transport physics and the evolution of pressure gradient near the separatrix play an important role in the L–I–H transition dynamics. To highlight these new physics, the previous predator–prey model is extended to include a new equation for the SOL physics. The model successfully reproduces the L–I–H transition process with several features comparing favourably with GPI observations.

Collaboration


Dive into the X.Z. Gong's collaboration.

Top Co-Authors

Avatar

J. Qian

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Baonian Wan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

X. Gao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guosheng Xu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

J.G. Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liqun Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qing Zang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yanping Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fukun Liu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge