Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where X.Z. Shawn Xu is active.

Publication


Featured researches published by X.Z. Shawn Xu.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform

X.Z. Shawn Xu; Moebius Ff; Donald L. Gill; Craig Montell

The TRP (transient receptor potential) superfamily includes a group of subfamilies of channel-like proteins mediating a multitude of physiological signaling processes. The TRP-melastatin (TRPM) subfamily includes the putative tumor suppressor melastatin (MLSN) and is a poorly characterized group of TRP-related proteins. Here, we describe the identification and characterization of an additional TRPM protein TRPM4. We reveal that TRPM4 and MLSN each mediate Ca2+ entry when expressed in HEK293 cells. Furthermore, we demonstrate that a short form of MLSN (MLSN-S) interacts directly with and suppresses the activity of full-length MLSN (MLSN-L). This suppression seems to result from the inhibition of translocation of MLSN-L to the plasma membrane. We propose that control of translocation through interaction between MLSN-S and MLSN-L represents a mode for regulating ion channel activity.


Nature | 2006

A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue

Wei Li; Zhaoyang Feng; Paul W. Sternberg; X.Z. Shawn Xu

The nematode Caenorhabditis elegans is commonly used as a genetic model organism for dissecting integration of the sensory and motor systems. Despite extensive genetic and behavioural analyses that have led to the identification of many genes and neural circuits involved in regulating C. elegans locomotion behaviour, it remains unclear whether and how somatosensory feedback modulates motor output during locomotion. In particular, no stretch receptors have been identified in C. elegans, raising the issue of whether stretch-receptor-mediated proprioception is used by C. elegans to regulate its locomotion behaviour. Here we have characterized TRP-4, the C. elegans homologue of the mechanosensitive TRPN channel. We show that trp-4 mutant worms bend their body abnormally, exhibiting a body posture distinct from that of wild-type worms during locomotion, suggesting that TRP-4 is involved in stretch-receptor-mediated proprioception. We show that TRP-4 acts in a single neuron, DVA, to mediate its function in proprioception, and that the activity of DVA can be stimulated by body stretch. DVA both positively and negatively modulates locomotion, providing a unique mechanism whereby a single neuron can fine-tune motor activity. Thus, DVA represents a stretch receptor neuron that regulates sensory–motor integration during C. elegans locomotion.


Nature Neuroscience | 2008

Light-sensitive neurons and channels mediate phototaxis in C. elegans

Alex Ward; Jie Liu; Zhaoyang Feng; X.Z. Shawn Xu

Phototaxis behavior is commonly observed in animals with light-sensing organs. C. elegans, however, is generally believed to lack phototaxis, as this animal lives in darkness (soil) and does not possess eyes. Here, we found that light stimuli elicited negative phototaxis in C. elegans and that this behavior is important for survival. We identified a group of ciliary sensory neurons as candidate photoreceptor cells for mediating phototaxis. Furthermore, we found that light excited photoreceptor cells by evoking a depolarizing conductance carried by cyclic guanosine monophosphate (cGMP)-sensitive cyclic nucleotide–gated (CNG) channels, revealing a conservation in phototransduction between worms and vertebrates. These results identify a new sensory modality in C. elegans and suggest that animals living in dark environments without light-sensing organs may not be presumed to be light insensitive. We propose that urbilaterians, the last common ancestor of bilaterians, might have already evolved a visual system that employs CNG channels and the second messenger cGMP for phototransduction.


Neuron | 2010

C. elegans TRP Family Protein TRP-4 Is a Pore-Forming Subunit of a Native Mechanotransduction Channel

Lijun Kang; Jingwei Gao; William R. Schafer; Zhixiong Xie; X.Z. Shawn Xu

Mechanotransduction channels mediate several common sensory modalities such as hearing, touch, and proprioception; however, very little is known about the molecular identities of these channels. Many TRP family channels have been implicated in mechanosensation, but none have been demonstrated to form a mechanotransduction channel, raising the question of whether TRP proteins simply play indirect roles in mechanosensation. Using Caenorhabditis elegans as a model, here we have recorded a mechanosensitive conductance in a ciliated mechanosensory neuron in vivo. This conductance develops very rapidly upon mechanical stimulation with its latency and activation time constant reaching the range of microseconds, consistent with mechanical gating of the conductance. TRP-4, a TRPN (NOMPC) subfamily channel, is required for this conductance. Importantly, point mutations in the predicted pore region of TRP-4 alter the ion selectivity of the conductance. These results indicate that TRP-4 functions as an essential pore-forming subunit of a native mechanotransduction channel.


Cell | 2011

The Neural Circuits and Synaptic Mechanisms Underlying Motor Initiation in C. elegans

Beverly J. Piggott; Jie Liu; Zhaoyang Feng; Seth A. Wescott; X.Z. Shawn Xu

C. elegans is widely used to dissect how neural circuits and genes generate behavior. During locomotion, worms initiate backward movement to change locomotion direction spontaneously or in response to sensory cues; however, the underlying neural circuits are not well defined. We applied a multidisciplinary approach to map neural circuits in freely behaving worms by integrating functional imaging, optogenetic interrogation, genetic manipulation, laser ablation, and electrophysiology. We found that a disinhibitory circuit and a stimulatory circuit together promote initiation of backward movement and that circuitry dynamics is differentially regulated by sensory cues. Both circuits require glutamatergic transmission but depend on distinct glutamate receptors. This dual mode of motor initiation control is found in mammals, suggesting that distantly related organisms with anatomically distinct nervous systems may adopt similar strategies for motor control. Additionally, our studies illustrate how a multidisciplinary approach facilitates dissection of circuit and synaptic mechanisms underlying behavior in a genetic model organism.


Cell | 2003

A C. elegans Sperm TRP Protein Required for Sperm-Egg Interactions during Fertilization

X.Z. Shawn Xu; Paul W. Sternberg

Fertilization, a critical step in animal reproduction, is triggered by a series of specialized sperm-egg interactions. However, the molecular mechanisms underlying fertilization are not well understood. Here, we identify a sperm-enriched C. elegans TRPC homolog, TRP-3. Mutations in trp-3 lead to sterility in both hermaphrodites and males due to a defect in their sperm. trp-3 mutant sperm are motile, but fail to fertilize oocytes after gamete contact. TRP-3 is initially localized in intracellular vesicles, and then translocates to the plasma membrane during sperm activation. This translocation coincides with a marked increase in store-operated calcium entry, providing an in vivo mechanism for the regulation of TRP-3 activity. As C. elegans oocytes lack egg coats, our data suggest that some TRPC family channels might function to mediate calcium influx during sperm-egg plasma membrane interactions leading to fertilization.


Cell | 2006

A C. elegans Model of Nicotine-Dependent Behavior: Regulation by TRP-Family Channels

Zhaoyang Feng; Wei Li; Alex Ward; Beverly J. Piggott; Erin R. Larkspur; Paul W. Sternberg; X.Z. Shawn Xu

Nicotine, the primary addictive substance in tobacco, induces profound behavioral responses in mammals, but the underlying genetic mechanisms are not well understood. Here we develop a C. elegans model of nicotine-dependent behavior. We show that worms exhibit behavioral responses to nicotine that parallel those observed in mammals, including acute response, tolerance, withdrawal, and sensitization. These nicotine responses require nicotinic acetylcholine receptor (nAChR) family genes that are known to mediate nicotine dependence in mammals, suggesting functional conservation of nAChRs in nicotine responses. Importantly, we find that mutant worms lacking TRPC (transient receptor potential canonical) channels are defective in their response to nicotine and that such a defect can be rescued by a human TRPC channel, revealing an unexpected role for TRPC channels in regulating nicotine-dependent behavior. Thus, C. elegans can be used to characterize known genes as well as to identify new genes regulating nicotine responses.


Cell | 2013

A Genetic Program Promotes C. elegans Longevity at Cold Temperatures via a Thermosensitive TRP Channel

Rui Xiao; Bi Zhang; Yongming Dong; Jianke Gong; Tao Xu; Jianfeng Liu; X.Z. Shawn Xu

Both poikilotherms and homeotherms live longer at lower body temperatures, highlighting a general role of temperature reduction in lifespan extension. However, the underlying mechanisms remain unclear. One prominent model is that cold temperatures reduce the rate of chemical reactions, thereby slowing the rate of aging. This view suggests that cold-dependent lifespan extension is simply a passive thermodynamic process. Here, we challenge this view in C. elegans by showing that genetic programs actively promote longevity at cold temperatures. We find that TRPA-1, a cold-sensitive TRP channel, detects temperature drop in the environment to extend lifespan. This effect requires cold-induced, TRPA-1-mediated calcium influx and a calcium-sensitive PKC that signals to the transcription factor DAF-16/FOXO. Human TRPA1 can functionally substitute for worm TRPA-1 in promoting longevity. Our results reveal a previously unrecognized function for TRP channels, link calcium signaling to longevity, and, importantly, demonstrate that genetic programs contribute to lifespan extension at cold temperatures.


Nature Communications | 2011

The neural circuits and sensory channels mediating harsh touch sensation in Caenorhabditis elegans

Wei Li; Lijun Kang; Beverly J. Piggott; Zhaoyang Feng; X.Z. Shawn Xu

Most animals can distinguish two distinct types of touch stimuli: gentle (innocuous) and harsh (noxious/painful) touch, however, the underlying mechanisms are not well understood. Caenorhabditis elegans is a useful model for the study of gentle touch sensation. However, little is known about harsh touch sensation in this organism. Here we characterize harsh touch sensation in C. elegans. We show that C. elegans exhibits differential behavioural responses to harsh touch and gentle touch. Laser ablations identify distinct sets of sensory neurons and interneurons required for harsh touch sensation at different body segments. Optogenetic stimulation of the circuitry can drive behaviour. Patch-clamp recordings reveal that TRP family and amiloride-sensitive Na(+) channels mediate touch-evoked currents in different sensory neurons. Our work identifies the neural circuits and characterizes the sensory channels mediating harsh touch sensation in C. elegans, establishing it as a genetic model for studying this sensory modality.


Pflügers Archiv: European Journal of Physiology | 2009

Function and regulation of TRP family channels in C. elegans.

Rui Xiao; X.Z. Shawn Xu

Seventeen transient receptor potential (TRP) family proteins are encoded by the C. elegans genome, and they cover all of the seven TRP subfamilies, including TRPC, TRPV, TRPM, TRPN, TRPA, TRPP, and TRPML. Classical forward and reverse genetic screens have isolated mutant alleles in every C. elegans trp gene, and their characterizations have revealed novel functions and regulatory mechanisms of TRP channels. For example, the TRPC channels TRP-1 and TRP-2 control nicotine-dependent behavior, while TRP-3, a sperm TRPC channel, is regulated by sperm activation and required for sperm–egg interactions during fertilization. Similar to their vertebrate counterparts, C. elegans TRPs function in sensory physiology. For instance, the TRPV channels OSM-9 and OCR-2 act in chemosensation, osmosensation, and touch sensation, the TRPA member TRPA-1 regulates touch sensation, while the TRPN channel TRP-4 mediates proprioception. Some C. elegans TRPM, TRPP, and TRPML members exhibit cellular functions similar to their vertebrate homologues and have provided insights into human diseases, including polycystic kidney disease, hypomagnesemia, and mucolipidosis type IV. The availability of a complete set of trp gene mutants in conjunction with its facile genetics makes C. elegans a powerful model for studying the function and regulation of TRP family channels in vivo.

Collaboration


Dive into the X.Z. Shawn Xu's collaboration.

Top Co-Authors

Avatar

Jianfeng Liu

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jianke Gong

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Zhaoyang Feng

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rui Xiao

Ohio State University

View shared research outputs
Top Co-Authors

Avatar

Bi Zhang

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jie Liu

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Zhaoyu Li

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Alex Ward

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Kang Shen

Howard Hughes Medical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge