Xavier Bouhy
Laval University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xavier Bouhy.
The Journal of Infectious Diseases | 2011
Andrés Pizzorno; Xavier Bouhy; Yacine Abed; Guy Boivin
BACKGROUND Neuraminidase inhibitors (NAIs) play a key role in the management of influenza epidemics and pandemics. Given the novel pandemic influenza A(H1N1) (pH1N1) virus and the restricted number of approved anti-influenza drugs, evaluation of potential drug-resistant variants is of high priority. METHODS Recombinant pH1N1 viruses were generated by reverse genetics, expressing either the wild-type or any of 9 mutant neuraminidase (NA) proteins (N2 numbering: E119G, E119V, D198G, I222V, H274Y, N294S, S334N, I222V-H274Y, and H274Y-S334N). We evaluated these recombinant viruses for their resistance phenotype to 4 NAIs (oseltamivir, zanamivir, peramivir, and A-315675), NA enzymatic activity, and replicative capacity. RESULTS The E119G and E119V mutations conferred a multidrug resistance phenotype to many NAIs but severely compromised viral fitness. The oseltamivir- and peramivir-resistance phenotype was confirmed for the H274Y and N294S mutants, although both viruses remained susceptible to zanamivir. Remarkably, the I222V mutation had a synergistic effect on the oseltamivir- and peramivir-resistance phenotype of H274Y and compensated for reduced viral fitness, raising concerns about the potential emergence and dissemination of this double-mutant virus. CONCLUSIONS This study highlights the importance of continuous monitoring of antiviral drug resistance in clinical samples as well as the need to develop new agents and combination strategies.
PLOS Pathogens | 2011
Yacine Abed; Andrés Pizzorno; Xavier Bouhy; Guy Boivin
Neuraminidase (NA) mutations conferring resistance to NA inhibitors were believed to compromise influenza virus fitness. Unexpectedly, an oseltamivir-resistant A/Brisbane/59/2007 (Bris07)-like H1N1 H275Y NA variant emerged in 2007 and completely replaced the wild-type (WT) strain in 2008–2009. The NA of such variant contained additional NA changes (R222Q, V234M and D344N) that potentially counteracted the detrimental effect of the H275Y mutation on viral fitness. Here, we rescued a recombinant Bris07-like WT virus and 4 NA mutants/revertants (H275Y, H275Y/Q222R, H275Y/M234V and H275Y/N344D) and characterized them in vitro and in ferrets. A fluorometric-based NA assay was used to determine Vmax and Km values. Replicative capacities were evaluated by yield assays in ST6Gal1-MDCK cells. Recombinant NA proteins were expressed in 293T cells and surface NA activity was determined. Infectivity and contact transmission experiments were evaluated for the WT, H275Y and H275Y/Q222R recombinants in ferrets. The H275Y mutation did not significantly alter Km and Vmax values compared to WT. The H275Y/N344D mutant had a reduced affinity (Km of 50 vs 12 µM) whereas the H275Y/M234V mutant had a reduced activity (22 vs 28 U/sec). In contrast, the H275Y/Q222R mutant showed a significant decrease of both affinity (40 µM) and activity (7 U/sec). The WT, H275Y, H275Y/M234V and H275Y/N344D recombinants had comparable replicative capacities contrasting with H275Y/Q222R mutant whose viral titers were significantly reduced. All studied mutations reduced the cell surface NA activity compared to WT with the maximum reduction being obtained for the H275Y/Q222R mutant. Comparable infectivity and transmissibility were seen between the WT and the H275Y mutant in ferrets whereas the H275Y/Q222R mutant was associated with significantly lower lung viral titers. In conclusion, the Q222R reversion mutation compromised Bris07-like H1N1 virus in vitro and in vivo. Thus, the R222Q NA mutation present in the WT virus may have facilitated the emergence of NAI-resistant Bris07 variants.
Antimicrobial Agents and Chemotherapy | 2012
Andrés Pizzorno; Yacine Abed; Xavier Bouhy; Édith Beaulieu; Corey Mallett; Rupert J. Russell; Guy Boivin
ABSTRACT Amino acid substitutions at residue I223 of the neuraminidase (NA) protein have been identified in 2009 pandemic influenza (pH1N1) variants with altered susceptibilities to NA inhibitors (NAIs). We used reverse genetics and site-directed mutagenesis to generate the recombinant A/Québec/144147/09 pH1N1 wild-type virus (WT) and five (I223R, I223V, H275Y, I223V-H275Y, and I223R-H275Y) NA mutants. A fluorimetry-based assay was used to determine 50% inhibitory concentrations (IC50s) of oseltamivir, zanamivir, and peramivir. Replicative capacity was analyzed by viral yield assays in ST6GalI-MDCK cells. Infectivity and transmission of the WT, H275Y, and I223V-H275Y recombinant viruses were evaluated in ferrets. As expected, the H275Y mutation conferred resistance to oseltamivir (982-fold) and peramivir (661-fold) compared to the drug-susceptible recombinant WT. The single I223R mutant was associated with reduced susceptibility to oseltamivir (53-fold), zanamivir (7-fold) and peramivir (10-fold), whereas the I223V virus had reduced susceptibility to oseltamivir (6-fold) only. Interestingly, enhanced levels of resistance to oseltamivir and peramivir and reduced susceptibility to zanamivir (1,647-, 17,347-, and 16-fold increases in IC50s, respectively) were observed for the I223R-H275Y recombinant, while the I223V-H275Y mutant exhibited 1,733-, 2,707-, and 2-fold increases in respective IC50s. The I223R and I223V changes were associated with equivalent or higher viral titers in vitro compared to the recombinant WT. Infectivity and transmissibility in ferrets were comparable between the recombinant WT and the H275Y or I223V-H275Y recombinants. In conclusion, amino acid changes at residue I223 may alter the NAI susceptibilities of pH1N1 variants without compromising fitness. Consequently, I223R and I223V mutations, alone or with H275Y, need to be thoroughly monitored.
Journal of Clinical Microbiology | 2011
Philippe Simon; Benjamin P. Holder; Xavier Bouhy; Yacine Abed; Catherine A. A. Beauchemin; Guy Boivin
ABSTRACT Oseltamivir-resistant A/H3N2 influenza isolates with or without the E119V and I222V neuraminidase (NA) mutations were recovered from an immunocompromised patient. Based on plaque size, yield assays, and NA activity, the impaired viral fitness of the E119V mutant was partially restored by the I222V NA mutation.
PLOS ONE | 2011
Benjamin P. Holder; Philippe Simon; Laura E. Liao; Yacine Abed; Xavier Bouhy; Catherine A. A. Beauchemin; Guy Boivin
In 2007, the A/Brisbane/59/2007 (H1N1) seasonal influenza virus strain acquired the oseltamivir-resistance mutation H275Y in its neuraminidase (NA) gene. Although previous studies had demonstrated that this mutation impaired the replication capacity of the influenza virus in vitro and in vivo, the A/Brisbane/59/2007 H275Y oseltamivir-resistant mutant completely out-competed the wild-type (WT) strain and was, in the 2008–2009 influenza season, the primary A/H1N1 circulating strain. Using a combination of plaque and viral yield assays, and a simple mathematical model, approximate values were extracted for two basic viral kinetics parameters of the in vitro infection. In the ST6GalI-MDCK cell line, the latent infection period (i.e., the time for a newly infected cell to start releasing virions) was found to be 1–3 h for the WT strain and more than 7 h for the H275Y mutant. The infecting time (i.e., the time for a single infectious cell to cause the infection of another one) was between 30 and 80 min for the WT, and less than 5 min for the H275Y mutant. Single-cycle viral yield experiments have provided qualitative confirmation of these findings. These results, though preliminary, suggest that the increased fitness success of the A/Brisbane/59/2007 H275Y mutant may be due to increased infectivity compensating for an impaired or delayed viral release, and are consistent with recent evidence for the mechanistic origins of fitness reduction and recovery in NA expression. The method applied here can reconcile seemingly contradictory results from the plaque and yield assays as two complementary views of replication kinetics, with both required to fully capture a strains fitness.
Journal of Clinical Microbiology | 2010
Philippe Simon; Benjamin P. Holder; Xavier Bouhy; Yacine Abed; Catherine A. A. Beauchemin; Guy Boivin
ABSTRACT Oseltamivir-resistant A/H3N2 influenza isolates with or without the E119V and I222V neuraminidase (NA) mutations were recovered from an immunocompromised patient. Based on plaque size, yield assays, and NA activity, the impaired viral fitness of the E119V mutant was partially restored by the I222V NA mutation.
PLOS ONE | 2012
Danuta M. Skowronski; Marie-Ève Hamelin; Naveed Z. Janjua; Gaston De Serres; Jennifer L. Gardy; Chantal Rhéaume; Xavier Bouhy; Guy Boivin
The annually reformulated trivalent inactivated influenza vaccine (TIV) includes both influenza A/subtypes (H3N2 and H1N1) but only one of two influenza B/lineages (Yamagata or Victoria). In a recent series of clinical trials to evaluate prime-boost response across influenza B/lineages, influenza-naïve infants and toddlers originally primed with two doses of 2008–09 B/Yamagata-containing TIV were assessed after two doses of B/Victoria-containing TIV administered in the subsequent 2009–10 and 2010–11 seasons. In these children, the Victoria-containing vaccines strongly recalled antibody to the initiating B/Yamagata antigen but induced only low B/Victoria antibody responses. To further evaluate this unexpected pattern of cross-lineage vaccine responses, we conducted additional immunogenicity assessment in mice. In the current study, mice were primed with two doses of 2008–09 Yamagata-containing TIV and subsequently boosted with two doses of 2010–11 Victoria-containing TIV (Group-Yam/Vic). With the same vaccines, we also assessed the reverse order of two-dose Victoria followed by two-dose Yamagata immunization (Group-Vic/Yam). The Group-Yam/Vic mice showed strong homologous responses to Yamagata antigen. However, as previously reported in children, subsequent doses of Victoria antigen substantially boosted Yamagata but induced only low antibody response to the immunizing Victoria component. The reverse order of Group-Vic/Yam mice also showed low homologous responses to Victoria but subsequent heterologous immunization with even a single dose of Yamagata antigen induced substantial boost response to both lineages. For influenza A/H3N2, homologous responses were comparably robust for the differing TIV variants and even a single follow-up dose of the heterologous strain, regardless of vaccine sequence, substantially boosted antibody to both strains. For H1N1, two doses of 2008–09 seasonal antigen significantly blunted response to two doses of the 2010–11 pandemic H1N1 antigen. Immunologic interactions between influenza viruses considered antigenically distant and in particular the cross-lineage influenza B and dominant Yamagata boost responses we have observed in both human and animal studies warrant further evaluation.
Emerging Infectious Diseases | 2012
Jesse Papenburg; Julie Carbonneau; Marie-Ève Hamelin; Sandra Isabel; Xavier Bouhy; Najwa Ohoumanne; Pierre Déry; Bosco Paes; Jacques Corbeil; Michel G. Bergeron; Gaston De Serres; Guy Boivin
To assess molecular evolution of the respiratory syncytial virus (RSV) fusion gene, we analyzed RSV-positive specimens from 123 children in Canada who did or did not receive RSV immunoprophylaxis (palivizumab) during 2006–2010. Resistance-conferring mutations within the palivizumab binding site occurred in 8.7% of palivizumab recipients and none of the nonrecipients.
Antiviral Therapy | 2011
Marie-Ève Hamelin; Mariana Baz; Xavier Bouhy; Édith Beaulieu; Karen Dubé; Corey Mallett; Guy Boivin
BACKGROUND The H275Y neuraminidase mutation conferring oseltamivir resistance has been reported in several pandemic A/H1N1 (pH1N1) isolates. We sought to evaluate transmission of this mutant virus through the direct contact and the airborne (aerosol and droplet) routes in the ferret model. METHODS Groups of four ferrets were infected with either wild-type (WT) or oseltamivir-resistant pH1N1 (H275Y) strains. At 24 h following viral infection, a receptive ferret was introduced in the same cage as the infected animal to assess direct contact transmission. For the airborne transmission, naive ferrets were placed in a modified separate cage adjacent to that of their respective index ferret. RESULTS The H275Y mutant virus was as efficiently transmitted as the WT strain by direct contact, as 100% (4/4) of contact ferrets in both groups seroconverted and shed virus. Mean peak viral titres were similar in both groups (4 × 10(4) and 2.63 × 10(4) plaque-forming units/ml after WT or H275Y mutant virus transmission, respectively). Peak viral shedding occurred on day 2 post-contact for the WT group and on day 4 post-contact for the H275Y mutant group. By contrast, airborne transmission of the mutant strain was less efficient, as only 25% (1/4) of contact ferrets seroconverted and shed virus, whereas 100% (4/4) of the WT ferrets did. Peak of viral replication was delayed compared to direct contact transmission and occurred on day 4 post-contact. CONCLUSIONS Transmission of the H275Y pH1N1 mutant strain by the airborne route is somewhat compromised, which may limit its widespread dissemination.
PLOS ONE | 2014
Danuta M. Skowronski; Marie-Ève Hamelin; Gaston De Serres; Naveed Z. Janjua; Guiyun Li; Suzana Sabaiduc; Xavier Bouhy; Christian Couture; Anders Leung; Darwyn Kobasa; Carissa Embury-Hyatt; Erwin de Bruin; Robert Balshaw; Sophie Lavigne; Martin Petric; Marion Koopmans; Guy Boivin
During spring-summer 2009, several observational studies from Canada showed increased risk of medically-attended, laboratory-confirmed A(H1N1)pdm09 illness among prior recipients of 2008–09 trivalent inactivated influenza vaccine (TIV). Explanatory hypotheses included direct and indirect vaccine effects. In a randomized placebo-controlled ferret study, we tested whether prior receipt of 2008–09 TIV may have directly influenced A(H1N1)pdm09 illness. Thirty-two ferrets (16/group) received 0.5 mL intra-muscular injections of the Canadian-manufactured, commercially-available, non-adjuvanted, split 2008–09 Fluviral or PBS placebo on days 0 and 28. On day 49 all animals were challenged (Ch0) with A(H1N1)pdm09. Four ferrets per group were randomly selected for sacrifice at day 5 post-challenge (Ch+5) and the rest followed until Ch+14. Sera were tested for antibody to vaccine antigens and A(H1N1)pdm09 by hemagglutination inhibition (HI), microneutralization (MN), nucleoprotein-based ELISA and HA1-based microarray assays. Clinical characteristics and nasal virus titers were recorded pre-challenge then post-challenge until sacrifice when lung virus titers, cytokines and inflammatory scores were determined. Baseline characteristics were similar between the two groups of influenza-naïve animals. Antibody rise to vaccine antigens was evident by ELISA and HA1-based microarray but not by HI or MN assays; virus challenge raised antibody to A(H1N1)pdm09 by all assays in both groups. Beginning at Ch+2, vaccinated animals experienced greater loss of appetite and weight than placebo animals, reaching the greatest between-group difference in weight loss relative to baseline at Ch+5 (7.4% vs. 5.2%; p = 0.01). At Ch+5 vaccinated animals had higher lung virus titers (log-mean 4.96 vs. 4.23pfu/mL, respectively; p = 0.01), lung inflammatory scores (5.8 vs. 2.1, respectively; p = 0.051) and cytokine levels (p>0.05). At Ch+14, both groups had recovered. Findings in influenza-naïve, systematically-infected ferrets may not replicate the human experience. While they cannot be considered conclusive to explain human observations, these ferret findings are consistent with direct, adverse effect of prior 2008–09 TIV receipt on A(H1N1)pdm09 illness. As such, they warrant further in-depth investigation and search for possible mechanistic explanations.