Xavier d’Anglemont de Tassigny
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xavier d’Anglemont de Tassigny.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Xavier d’Anglemont de Tassigny; Lisa A. Fagg; John Dixon; Kate Day; Harry G. Leitch; Alan G. Hendrick; Dirk Zahn; Isabelle Franceschini; Alain Caraty; Mark B. L. Carlton; Samuel Aparicio; William H. Colledge
The G protein-coupled receptor GPR54 (AXOR12, OT7T175) is central to acquisition of reproductive competency in mammals. Peptide ligands (kisspeptins) for this receptor are encoded by the Kiss1 gene, and administration of exogenous kisspeptins stimulates hypothalamic gonadotropin-releasing hormone (GnRH) release in several species, including humans. To establish that kisspeptins are the authentic agonists of GPR54 in vivo and to determine whether these ligands have additional physiological functions we have generated mice with a targeted disruption of the Kiss1 gene. Kiss1-null mice are viable and healthy with no apparent abnormalities but fail to undergo sexual maturation. Mutant female mice do not progress through the estrous cycle, have thread-like uteri and small ovaries, and do not produce mature Graffian follicles. Mutant males have small testes, and spermatogenesis arrests mainly at the early haploid spermatid stage. Both sexes have low circulating gonadotropin (luteinizing hormone and follicle-stimulating hormone) and sex steroid (β-estradiol or testosterone) hormone levels. Migration of GnRH neurons into the hypothalamus appears normal with appropriate axonal connections to the median eminence and total GnRH content. The hypothalamic–pituitary axis is functional in these mice as shown by robust luteinizing hormone secretion after peripheral administration of kisspeptin. The virtually identical phenotype of Gpr54- and Kiss1-null mice provides direct proof that kisspeptins are the true physiological ligand for the GPR54 receptor in vivo. Kiss1 also does not seem to play a vital role in any other physiological processes other than activation of the hypothalamic–pituitary–gonadal axis, and loss of Kiss1 cannot be overcome by compensatory mechanisms.
The Journal of Neuroscience | 2008
Jenny Clarkson; Xavier d’Anglemont de Tassigny; Adriana Santos Moreno; William H. Colledge; Allan E. Herbison
Kisspeptin and its receptor GPR54 have recently been identified as key signaling partners in the neural control of fertility in animal models and humans. The gonadotropin-releasing hormone (GnRH) neurons represent the final output neurons of the neural network controlling fertility and are suspected to be the primary locus of kisspeptin–GPR54 signaling. Using mouse models, the present study addressed whether kisspeptin and GPR54 have a key role in the activation of GnRH neurons to generate the luteinizing hormone (LH) surge responsible for ovulation. Dual-label immunocytochemistry experiments showed that 40–60% of kisspeptin neurons in the rostral periventricular area of the third ventricle (RP3V) expressed estrogen receptor α and progesterone receptors. Using an ovariectomized, gonadal steroid-replacement regimen, which reliably generates an LH surge, ∼30% of RP3V kisspeptin neurons were found to express c-FOS in surging mice compared with 0% in nonsurging controls. A strong correlation was found between the percentage of c-FOS-positive kisspeptin neurons and the percentage of c-FOS-positive GnRH neurons. To evaluate whether kisspeptin and/or GPR54 were essential for GnRH neuron activation and the LH surge, Gpr54- and Kiss1-null mice were examined. Whereas wild-type littermates all exhibited LH surges and c-FOS in ∼50% of their GnRH neurons, none of the mutant mice from either line showed an LH surge or any GnRH neurons with c-FOS. These observations provide the first evidence that kisspeptin–GPR54 signaling is essential for GnRH neuron activation that initiates ovulation. This broadens considerably the potential roles and therapeutic possibilities for kisspeptin and GPR54 in fertility regulation.
Endocrinology | 2008
Xavier d’Anglemont de Tassigny; Lisa A. Fagg; Mark B. L. Carlton; William H. Colledge
The G protein-coupled receptor GPR54, and its peptide ligand kisspeptin (Kp), are crucial for the induction and maintenance of mammalian reproductive function. GPR54 is expressed by GnRH neurons and is directly activated by Kp to stimulate GnRH release. We hypothesized that Kp may be able to act at the GnRH nerve terminals located in the mediobasal hypothalamus (MBH) region. To test this hypothesis, we used organotypic culture of MBH explants challenged with Kp, followed by RIA to detect GnRH released into the cultured medium. Kp stimulation for 1 h induced GnRH release from wild-type male MBH in a dose-dependent manner, whereas this did not occur in MBH explants isolated from Gpr54 null mice. Continuous Kp stimulation caused a sustained GnRH release for 4 h, followed by a decrease of GnRH release, suggesting a desensitization of GPR54 activity. Tetrodotoxin did not alter the Kp-induced GnRH release, indicating that Kp can act directly at the GnRH nerve terminals. To localize Gpr54 expression within the MBH, we used transgenic mice, in which Gpr54 expression is tagged with an IRES-LacZ reporter gene and can be visualized by beta-galactosidase staining. Gpr54 expression was detected outside of the median eminence, in the pars tuberalis. In conclusion, our results provide evidence for a potent stimulating effect of Kp at GnRH nerve terminals in the MBH of the mouse. This study suggests a new point at which Kp can act on GnRH neurons.
Endocrinology | 2010
Allan E. Herbison; Xavier d’Anglemont de Tassigny; Joanne Doran; William H. Colledge
Kisspeptin and G protein-coupled receptor 54 (GPR54) are now acknowledged to play essential roles in the neural regulation of fertility. Using a transgenic Gpr54 LacZ knock-in mouse model, this study aimed to provide 1) a detailed map of cells expressing Gpr54 in the mouse brain and 2) an analysis of Gpr54 expression in GnRH neurons across postnatal development. The highest density of Gpr54-expressing cells in the mouse central nervous system was found in the dentate gyrus of the hippocampus beginning on postnatal d 6 (P6). Abundant Gpr54 expression was also noted in the septum, rostral preoptic area (rPOA), anteroventral nucleus of the thalamus, posterior hypothalamus, periaqueductal grey, supramammillary and pontine nuclei, and dorsal cochlear nucleus. No Gpr54 expression was detected in the arcuate and rostral periventricular nuclei of the hypothalamus. Dual-labeling experiments showed that essentially all Gpr54-expressing cells in the rPOA were GnRH neurons. Analyses of mice at birth, P1, P5, P20, and P30 and as adults revealed a gradual increase in the percentage of GnRH neurons expressing Gpr54 from approximately 40% at birth through to approximately 70% from P20 onward. Whereas GnRH neurons located in the septum displayed a consistent increase across this time, GnRH neurons in the rPOA showed a sharp reduction in Gpr54 expression after birth (to approximately 10% at P5) before increasing to the 70% expression levels by P20. Together these findings provide an anatomical basis for the exploration of Gpr54 actions outside the reproductive axis and reveal a complex temporal and spatial pattern of Gpr54 gene expression in developing GnRH neurons.
The Journal of Neuroscience | 2011
Xinhuai Liu; Robert Porteous; Xavier d’Anglemont de Tassigny; William H. Colledge; Robert P. Millar; Sandra L. Petersen; Allan E. Herbison
The anteroventral periventricular nucleus (AVPV) is thought to play a key role in regulating the excitability of gonadotropin-releasing hormone (GnRH) neurons that control fertility. Using an angled, parahorizontal brain slice preparation we have undertaken a series of electrophysiological experiments to examine how the AVPV controls GnRH neurons in adult male and female mice. More than half (59%) of GnRH neurons located in the rostral preoptic area were found to receive monosynaptic inputs from the AVPV in a sex-dependent manner. AVPV stimulation frequencies <1 Hz generated short-latency action potentials in GnRH neurons with GABA and glutamate mediating >90% of the evoked fast synaptic currents. The AVPV GABA input was dominant and found to excite or inhibit GnRH neurons in a cell-dependent manner. Increasing the AVPV stimulation frequency to 5–10 Hz resulted in the appearance of additional poststimulus inhibitory as well as delayed excitatory responses in GnRH neurons that were independent of ionotropic amino acid receptors. The inhibition observed immediately following the end of the stimulation period was mediated partly by GABAB receptors, while the delayed activation was mediated by the neuropeptide kisspeptin. The latter response was essentially absent in Gpr54 knock-out mice and abolished by a Gpr54 antagonist. Together, these studies show that AVPV neurons provide direct amino acid and neuropeptidergic inputs to GnRH neurons. Low-frequency activation generates predominant GABA/glutamate release with higher frequency activation recruiting release of kisspeptin. This frequency-dependent release of amino acid and neuropeptide neurotransmitters greatly expands the range of AVPV control of GnRH neuron excitability.
Physiology | 2010
Xavier d’Anglemont de Tassigny; William H. Colledge
Kisspeptins are a group of peptides that stimulate GnRH release and are required for puberty and maintenance of normal reproductive function. This review focuses on our understanding of the way in which kisspeptin signaling regulates mammalian fertility and how they act as central integrators of different hormonal and physiological signals.
Journal of Clinical Investigation | 2014
Nicole Bellefontaine; Konstantina Chachlaki; Jyoti Parkash; Charlotte Vanacker; William H. Colledge; Xavier d’Anglemont de Tassigny; John Garthwaite; Sebastien G. Bouret; Vincent Prevot
The transition to puberty and adult fertility both require a minimum level of energy availability. The adipocyte-derived hormone leptin signals the long-term status of peripheral energy stores and serves as a key metabolic messenger to the neuroendocrine reproductive axis. Humans and mice lacking leptin or its receptor fail to complete puberty and are infertile. Restoration of leptin levels in these individuals promotes sexual maturation, which requires the pulsatile, coordinated delivery of gonadotropin-releasing hormone to the pituitary and the resulting surge of luteinizing hormone (LH); however, the neural circuits that control the leptin-mediated induction of the reproductive axis are not fully understood. Here, we found that leptin coordinated fertility by acting on neurons in the preoptic region of the hypothalamus and inducing the synthesis of the freely diffusible volume-based transmitter NO, through the activation of neuronal NO synthase (nNOS) in these neurons. The deletion of the gene encoding nNOS or its pharmacological inhibition in the preoptic region blunted the stimulatory action of exogenous leptin on LH secretion and prevented the restoration of fertility in leptin-deficient female mice by leptin treatment. Together, these data indicate that leptin plays a central role in regulating the hypothalamo-pituitary-gonadal axis in vivo through the activation of nNOS in neurons of the preoptic region.
The Journal of Neuroscience | 2012
Naresh Kumar Hanchate; Jyoti Parkash; Nicole Bellefontaine; Danièle Mazur; William H. Colledge; Xavier d’Anglemont de Tassigny; Vincent Prevot
Reproduction is controlled in the brain by a neural network that drives the secretion of gonadotropin-releasing hormone (GnRH). Various permissive homeostatic signals must be integrated to achieve ovulation in mammals. However, the neural events controlling the timely activation of GnRH neurons are not completely understood. Here we show that kisspeptin, a potent activator of GnRH neuronal activity, directly communicates with neurons that synthesize the gaseous transmitter nitric oxide (NO) in the preoptic region to coordinate the progression of the ovarian cycle. Using a transgenic Gpr54-null IRES-LacZ knock-in mouse model, we demonstrate that neurons containing neuronal NO synthase (nNOS), which are morphologically associated with kisspeptin fibers, express the kisspeptin receptor GPR54 in the preoptic region, but not in the tuberal region of the hypothalamus. The activation of kisspeptin signaling in preoptic neurons promotes the activation of nNOS through its phosphorylation on serine 1412 via the AKT pathway and mimics the positive feedback effects of estrogens. Finally, we show that while NO release restrains the reproductive axis at stages of the ovarian cycle during which estrogens exert their inhibitory feedback, it is required for the kisspeptin-dependent preovulatory activation of GnRH neurons. Thus, interactions between kisspeptin and nNOS neurons may play a central role in regulating the hypothalamic–pituitary–gonadal axis in vivo.
Frontiers in Neuroendocrinology | 2010
Vincent Prevot; Naresh Kumar Hanchate; Nicole Bellefontaine; Ariane Sharif; Jyoti Parkash; Cecilia Estrella; Cécile Allet; Sandrine De Seranno; Céline Campagne; Xavier d’Anglemont de Tassigny; Marc Baroncini
As the final common pathway for the central control of gonadotropin secretion, GnRH neurons are subjected to numerous regulatory homeostatic and external factors to achieve levels of fertility appropriate to the organism. The GnRH system thus provides an excellent model in which to investigate the complex relationships between neurosecretion, morphological plasticity and the expression of a physiological function. Throughout the reproductive cycle beginning from postnatal sexual development and the onset of puberty to reproductive senescence, and even within the ovarian cycle itself, all levels of the GnRH system undergo morphological plasticity. This structural plasticity within the GnRH system appears crucial to the timely control of reproductive competence within the individual, and as such must have coordinated actions of multiple signals secreted from glial cells, endothelial cells, and GnRH neurons. Thus, the GnRH system must be viewed as a complete neuro-glial-vascular unit that works in concert to maintain the reproductive axis.
Endocrinology | 2010
Sandrine De Seranno; Xavier d’Anglemont de Tassigny; Cecilia Estrella; Anne Loyens; Sergey Kasparov; Danièle Leroy; Sergio R. Ojeda; Jean-Claude Beauvillain; Vincent Prevot
In the ever-changing physiological context of the neuroendocrine brain, the mechanisms by which cellular events involving neurons, astroglia, and vascular cells are coordinated to bring forth the appropriate neuronal signaling is not yet known but is amenable to examination. In the median eminence of the hypothalamus, endothelial cells are key players in the plasticity of tanycytes (specialized astroglia) and neuroendocrine synapse efficacy. Here we report that estradiol acts on both purified endothelial cells and isolated tanycytes to trigger endothelial-to-glial communication that leads to a sudden and massive retraction of tanycyte processes. The blockade of endothelial nitric oxide synthase by in vitro adenoviral-mediated gene transfer of a dominant-negative form of endothelial nitric oxide synthase abrogates the estradiol-induced tanycyte plasticity mediated by endothelial cells. In parallel, increases in prostaglandin-E(2) (PGE(2)) due to changes in cyclooxygenase (COX)-1 and COX-2 expression induced by the exposure of tanycytes to estradiol promote acute tanycyte plasticity. We also demonstrate by electron microscopy that the administration of PGE(2) to median eminence explants induces rapid neuroglial plasticity at the neurovascular junction of neurons that release GnRH (the neuropeptide controlling reproduction). Conversely, preventing local PGE(2) synthesis in the median eminence of adult female rats with the COX inhibitor indomethacin impairs the ovarian cycle, a process that requires a pulsatile, coordinated delivery of GnRH into the hypothalamo-hypophyseal portal system. Taken together, our findings show that estradiol controls the dialog between endothelial cells and astroglia to regulate neuroglial plasticity in the neuroendocrine brain.