Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xavier Flores-Alsina is active.

Publication


Featured researches published by Xavier Flores-Alsina.


Water Research | 2011

Including greenhouse gas emissions during benchmarking of wastewater treatment plant control strategies.

Xavier Flores-Alsina; Lluís Corominas; Laura Snip; Peter Vanrolleghem

The main objective of this paper is to demonstrate how greenhouse gas (GHG) emissions can be quantified during the evaluation of control strategies in wastewater treatment plants (WWTP). A modified version of the IWA Benchmark Simulation Model No 2 (BSM2G) is hereby used as a simulation case study. Thus, the traditional effluent quality index (EQI), operational cost index (OCI) and time in violation (TIV) used to evaluate control strategies in WWTP are complemented with a new dimension dealing with GHG emissions. The proposed approach is based on a set of comprehensive models that estimate all potential on-site and off-site sources of GHG emissions. The case study investigates the overall performance of several control strategies and demonstrates that substantial reductions in effluent pollution, operating costs and GHG emissions can be achieved when automatic control is implemented. Furthermore, the study is complemented with a scenario analysis that examines the role of i) the dissolved oxygen (DO) set-point, ii) the sludge retention time (SRT) and iii) the organic carbon/nitrogen ratio (COD/N) as promoters of GHG emissions. The results of this study show the potential mechanisms that promote the formation of CO2, CH4 and N2O when different operational strategies are implemented, the existing synergies and trade-offs amongst the EQI, the OCI and TIV criteria and finally the need to reach a compromise solution to achieve an optimal plant performance.


Journal of Environmental Management | 2010

Multiple-objective evaluation of wastewater treatment plant control alternatives

Xavier Flores-Alsina; Alejandro Gallego; Gumersindo Feijoo; Ignasi Rodríguez-Roda

Besides the evaluation of the environmental issues, the correct assessment of wastewater treatment plants (WWTP) should take into account several objectives such as: economic e.g. operation costs; technical e.g. risk of suffering microbiology-related TSS separation problems; or legal e.g. accomplishment with the effluent standards in terms of the different pollution loads. For this reason, the main objective of this paper is to show the benefits of complementing the environmental assessment carried out by life cycle assessment with economical, technical and legal criteria. Using a preliminary version of the BSM2 as a case study, different combinations of controllers are implemented, simulated and evaluated. In the following step, the resulting multi-criteria matrix is mined using multivariate statistical techniques. The results showed that the presence of an external carbon source addition, the type of aeration system and the TSS controller are the key elements creating the differences amongst the alternatives. Also, it was possible to characterize the different control strategies according to a set of aggregated criteria. Additionally, the existing synergies amongst different objectives and their consequent trade-offs were identified. Finally, it was discovered that from the initial extensive list of evaluation criteria, only a small set of five are really discriminant, being useful to differentiate within the generated alternatives.


Biotechnology and Bioengineering | 2012

Comparison of different modeling approaches to better evaluate greenhouse gas emissions from whole wastewater treatment plants

Lluís Corominas; Xavier Flores-Alsina; Laura Snip; Peter Vanrolleghem

New tools are being developed to estimate greenhouse gas (GHG) emissions from wastewater treatment plants (WWTPs). There is a trend to move from empirical factors to simple comprehensive and more complex process‐based models. Thus, the main objective of this study is to demonstrate the importance of using process‐based dynamic models to better evaluate GHG emissions. This is tackled by defining a virtual case study based on the whole plant Benchmark Simulation Model Platform No. 2 (BSM2) and estimating GHG emissions using two approaches: (1) a combination of simple comprehensive models based on empirical assumptions and (2) a more sophisticated approach, which describes the mechanistic production of nitrous oxide (N2O) in the biological reactor (ASMN) and the generation of carbon dioxide (CO2) and methane (CH4) from the Anaerobic Digestion Model 1 (ADM1). Models already presented in literature are used, but modifications compared to the previously published ASMN model have been made. Also model interfaces between the ASMN and the ADM1 models have been developed. The results show that the use of the different approaches leads to significant differences in the N2O emissions (a factor of 3) but not in the CH4 emissions (about 4%). Estimations of GHG emissions are also compared for steady‐state and dynamic simulations. Averaged values for GHG emissions obtained with steady‐state and dynamic simulations are rather similar. However, when looking at the dynamics of N2O emissions, large variability (3–6u2009tonu2009CO2eu2009day−1) is observed due to changes in the influent wastewater C/N ratio and temperature which would not be captured by a steady‐state analysis (4.4u2009tonu2009CO2eu2009day−1). Finally, this study also shows the effect of changing the anaerobic digestion volume on the total GHG emissions. Decreasing the anaerobic digester volume resulted in a slight reduction in CH4 emissions (about 5%), but significantly decreased N2O emissions in the water line (by 14%). Biotechnol. Bioeng. 2012; 109: 2854–2863.


Science of The Total Environment | 2014

Balancing effluent quality, economic cost and greenhouse gas emissions during the evaluation of (plant-wide) control/operational strategies in WWTPs.

Xavier Flores-Alsina; Magnus Arnell; Youri Amerlinck; Lluís Corominas; Krist V. Gernaey; Lisha Guo; Erik Lindblom; Ingmar Nopens; Jose Porro; Andrew Shaw; Laura Snip; Peter Vanrolleghem; Ulf Jeppsson

The objective of this paper was to show the potential additional insight that result from adding greenhouse gas (GHG) emissions to plant performance evaluation criteria, such as effluent quality (EQI) and operational cost (OCI) indices, when evaluating (plant-wide) control/operational strategies in wastewater treatment plants (WWTPs). The proposed GHG evaluation is based on a set of comprehensive dynamic models that estimate the most significant potential on-site and off-site sources of CO₂, CH₄ and N₂O. The study calculates and discusses the changes in EQI, OCI and the emission of GHGs as a consequence of varying the following four process variables: (i) the set point of aeration control in the activated sludge section; (ii) the removal efficiency of total suspended solids (TSS) in the primary clarifier; (iii) the temperature in the anaerobic digester; and (iv) the control of the flow of anaerobic digester supernatants coming from sludge treatment. Based upon the assumptions built into the model structures, simulation results highlight the potential undesirable effects of increased GHG production when carrying out local energy optimization of the aeration system in the activated sludge section and energy recovery from the AD. Although off-site CO₂ emissions may decrease, the effect is counterbalanced by increased N₂O emissions, especially since N₂O has a 300-fold stronger greenhouse effect than CO₂. The reported results emphasize the importance and usefulness of using multiple evaluation criteria to compare and evaluate (plant-wide) control strategies in a WWTP for more informed operational decision making.


Journal of Environmental Management | 2013

Including Life Cycle Assessment for decision-making in controlling wastewater nutrient removal systems.

Lluís Corominas; Henrik Fred Larsen; Xavier Flores-Alsina; Peter Vanrolleghem

This paper focuses on the use of Life Cycle Assessment (LCA) to evaluate the performance of seventeen control strategies in wastewater treatment plants (WWTPs). It tackles the importance of using site-specific factors for nutrient enrichment when decision-makers have to select best operating strategies. Therefore, the LCA evaluation is repeated for three different scenarios depending on the limitation of nitrogen (N), phosphorus (P), or both, when evaluating the nutrient enrichment impact in water bodies. The LCA results indicate that for treated effluent discharged into N-deficient aquatic systems (e.g. open coastal areas) the most eco-friendly strategies differ from the ones dealing with discharging into P-deficient (e.g. lakes and rivers) and N&P-deficient systems (e.g. coastal zones). More particularly, the results suggest that strategies that promote increased nutrient removal and/or energy savings present an environmental benefit for N&P and P-deficient systems. This is not the case when addressing N-deficient systems for which the use of chemicals (even for improving N removal efficiencies) is not always beneficial for the environment. A sensitivity analysis on using weighting of the impact categories is conducted to assess how value choices (policy decisions) may affect the management of WWTPs. For the scenarios with only N-limitation, the LCA-based ranking of the control strategies is sensitive to the choice of weighting factors, whereas this is not the case for N&P or P-deficient aquatic systems.


Water Science and Technology | 2013

Benchmark simulation models, quo vadis?

Ulf Jeppsson; J. Alex; Damien J. Batstone; Lorenzo Benedetti; J. Comas; John B. Copp; Ll. Corominas; Xavier Flores-Alsina; Krist V. Gernaey; Ingmar Nopens; Marie-Noëlle Pons; Ignasi Rodríguez-Roda; Christian Rosén; Jean-Philippe Steyer; Peter Vanrolleghem; Eveline Volcke; Darko Vrečko

As the work of the IWA Task Group on Benchmarking of Control Strategies for wastewater treatment plants (WWTPs) is coming to an end, it is essential to disseminate the knowledge gained. For this reason, all authors of the IWA Scientific and Technical Report on benchmarking have come together to provide their insights, highlighting areas where knowledge may still be deficient and where new opportunities are emerging, and to propose potential avenues for future development and application of the general benchmarking framework and its associated tools. The paper focuses on the topics of temporal and spatial extension, process modifications within the WWTP, the realism of models, control strategy extensions and the potential for new evaluation tools within the existing benchmark system. We find that there are major opportunities for application within all of these areas, either from existing work already being done within the context of the benchmarking simulation models (BSMs) or applicable work in the wider literature. Of key importance is increasing capability, usability and transparency of the BSM package while avoiding unnecessary complexity.


Water Research | 2014

Calibration and validation of a phenomenological influent pollutant disturbance scenario generator using full-scale data

Xavier Flores-Alsina; Ramesh Saagi; Erik Lindblom; Carsten Thirsing; Dines Thornberg; Krist V. Gernaey; Ulf Jeppsson

The objective of this paper is to demonstrate the full-scale feasibility of the phenomenological dynamic influent pollutant disturbance scenario generator (DIPDSG) that was originally used to create the influent data of the International Water Association (IWA) Benchmark Simulation Model No. 2 (BSM2). In this study, the influent characteristics of two large Scandinavian treatment facilities are studied for a period of two years. A step-wise procedure based on adjusting the most sensitive parameters at different time scales is followed to calibrate/validate the DIPDSG model blocks for: 1) flow rate; 2) pollutants (carbon, nitrogen); 3) temperature; and, 4) transport. Simulation results show that the model successfully describes daily/weekly and seasonal variations and the effect of rainfall and snow melting on the influent flow rate, pollutant concentrations and temperature profiles. Furthermore, additional phenomena such as size and accumulation/flush of particulates of/in the upstream catchment and sewer system are incorporated in the simulated time series. Finally, this study is complemented with: 1) the generation of additional future scenarios showing the effects of different rainfall patterns (climate change) or influent biodegradability (process uncertainty) on the generated time series; 2) a demonstration of how to reduce the cost/workload of measuring campaigns by filling the gaps due to missing data in the influent profiles; and, 3) a critical discussion of the presented results balancing model structure/calibration procedure complexity and prediction capabilities.


Water Science and Technology | 2012

Benchmarking biological nutrient removal in wastewater treatment plants: influence of mathematical model assumptions.

Xavier Flores-Alsina; Krist V. Gernaey; Ulf Jeppsson

This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant was compared for a series of model assumptions. Three different model approaches describing BNR are considered. In the reference case, the original model implementations are used to simulate WWTP1 (ASM1 & 3) and WWTP2 (ASM2d). The second set of models includes a reactive settler, which extends the description of the non-reactive TSS sedimentation and transport in the reference case with the full set of ASM processes. Finally, the third set of models is based on including electron acceptor dependency of biomass decay rates for ASM1 (WWTP1) and ASM2d (WWTP2). The results show that incorporation of a reactive settler: (1) increases the hydrolysis of particulates; (2) increases the overall plants denitrification efficiency by reducing the S(NOx) concentration at the bottom of the clarifier; (3) increases the oxidation of COD compounds; (4) increases X(OHO) and X(ANO) decay; and, finally, (5) increases the growth of X(PAO) and formation of X(PHA,Stor) for ASM2d, which has a major impact on the whole P removal system. Introduction of electron acceptor dependent decay leads to a substantial increase of the concentration of X(ANO), X(OHO) and X(PAO) in the bottom of the clarifier. The paper ends with a critical discussion of the influence of the different model assumptions, and emphasizes the need for a model user to understand the significant differences in simulation results that are obtained when applying different combinations of standard models.


Water Research | 2009

Including the effects of filamentous bulking sludge during the simulation of wastewater treatment plants using a risk assessment model

Xavier Flores-Alsina; Joaquim Comas; Ignasi Rodríguez-Roda; Krist V. Gernaey; Christian Rosén

The main objective of this paper is to demonstrate how including the occurrence of filamentous bulking sludge in a secondary clarifier model will affect the predicted process performance during the simulation of WWTPs. The IWA Benchmark Simulation Model No. 2 (BSM2) is hereby used as a simulation case study. Practically, the proposed approach includes a risk assessment model based on a knowledge-based decision tree to detect favourable conditions for the development of filamentous bulking sludge. Once such conditions are detected, the settling characteristics of the secondary clarifier model are automatically changed during the simulation by modifying the settling model parameters to mimic the effect of growth of filamentous bacteria. The simulation results demonstrate that including effects of filamentous bulking in the secondary clarifier model results in a more realistic plant performance. Particularly, during the periods when the conditions for the development of filamentous bulking sludge are favourable--leading to poor activated sludge compaction, low return and waste TSS concentrations and difficulties in maintaining the biomass in the aeration basins--a subsequent reduction in overall pollution removal efficiency is observed. Also, a scenario analysis is conducted to examine i) the influence of sludge retention time (SRT), the external recirculation flow rate (Q(r)) and the air flow rate in the bioreactor (modelled as k(L)a) as factors promoting bulking sludge, and ii) the effect on the model predictions when the settling properties are changed due to a possible proliferation of filamentous microorganisms. Finally, the potentially adverse effects of certain operational procedures are highlighted, since such effects are normally not considered by state-of-the-art models that do not include microbiology-related solids separation problems.


Environmental Modelling and Software | 2014

Modelling the occurrence, transport and fate of pharmaceuticals in wastewater systems

Laura Snip; Xavier Flores-Alsina; Benedek G. Plósz; Ulf Jeppsson; Krist V. Gernaey

This paper demonstrates how occurrence, transport and fate of pharmaceuticals at trace levels can be assessed when modelling wastewater treatment systems using two case studies. Firstly, two approaches based on: 1) phenomenology; and, 2) Markov Chains, are developed to describe the dynamics of pharmaceuticals with or without clear administration patterns. Additional simulations also show that sewer conditions might have an important effect on the behaviour of the generated compounds and their metabolites. The results demonstrate that different operating conditions in wastewater treatment plants can have opposite effects on the studied pharmaceuticals, especially when they present co-metabolic or inhibitory behaviour in the presence of biodegradable substrate. Finally, the paper ends with: i) a critical discussion of the presented results; ii) a thorough analysis of the limitations of the proposed approach; and, iii) future pathways to improve the overall modelling of micropollutants. Display Omitted A set of models predicting occurrence, transport and fate of pharmaceuticals is shown.Patterns are modelled using phenomenological/stochastic approaches.Transport conditions have an impact on soluble/particulate compounds.Co-metabolic/inhibitory effect with other wastewater compounds is included.

Collaboration


Dive into the Xavier Flores-Alsina's collaboration.

Top Co-Authors

Avatar

Krist V. Gernaey

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Lluís Corominas

Catalan Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Snip

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik Lindblom

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Gürkan Sin

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Henrik Fred Larsen

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge