Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xavier Foissac is active.

Publication


Featured researches published by Xavier Foissac.


International Journal of Systematic and Evolutionary Microbiology | 2011

Genetic diversity of European phytoplasmas of the 16SrV taxonomic group and proposal of 'Candidatus Phytoplasma rubi'

Sylvie Malembic-Maher; Pascal Salar; Luisa Filippin; Patricia Carle; Elisa Angelini; Xavier Foissac

In addition to the grapevine flavescence dorée phytoplasmas, other members of taxonomic group 16SrV phytoplasmas infect grapevines, alders and species of the genera Clematis and Rubus in Europe. In order to investigate which phytoplasmas constitute discrete, species-level taxa, several strains were analysed by comparing their 16S rRNA gene sequences and a set of five housekeeping genes. Whereas 16S rRNA gene sequence similarity values were >97.5u200a%, the proposed threshold to distinguish two Candidatus Phytoplasma taxa, phylogenetic analysis of the combined sequences of the tuf, rplV-rpsC, rplF-rplR, map and uvrB-degV genetic loci showed that two discrete phylogenetic clusters could be clearly distinguished. The first cluster grouped flavescence dorée (FD) phytoplasmas, alder yellows (AldY) phytoplasmas, Clematis (CL) phytoplasmas and the Palatinate grapevine yellows (PGY) phytoplasmas. The second cluster comprised Rubus stunt (RS) phytoplasmas. In addition to the specificity of the insect vector, the Rubus stunt phytoplasma contained specific sequences in the 16S rRNA gene. Hence, the Rubus stunt phytoplasma 16S rRNA gene was sufficiently differentiated to represent a novel putative taxon: Candidatus Phytoplasma rubi.


Gene | 2011

The stolbur phytoplasma antigenic membrane protein gene stamp is submitted to diversifying positive selection.

Anne Fabre; Jean-Luc Danet; Xavier Foissac

Surface proteins play an important role in phytoplasma life cycle. The antigenic membrane protein (AMP) of Candidatus Phytoplasma asteris has been shown to interact with the insect microfilaments. Due to the synteny of the groL-amp-nadE genetic locus between phytoplasma genomes, the gene stamp that encodes the antigenic membrane protein of stolbur phytoplasma has been cloned and characterized. It encodes a 157 amino acid-long protein with a predicted signal peptide and a C-terminal hydrophobic alpha-helix. STAMP was 26-40% identical to AMP of Candidatus Phytoplasma asteris strains and 40% identical to AMP of Ca. P. japonicum. The expression of STAMP in Escherichia. coli produced a 16 kDa peptide recognized by an anti-stolbur monoclonal antibody. Stamp was more variable than the house-keeping gene secY and the ratio between non-synonymous over synonymous mutations (dN/dS ) was 2.78 for stamp as compared to 0.64 for secY. This indicates that stamp is submitted to a positive diversifying selection pressure.


Journal of Applied Microbiology | 2010

Genetic variability of the stolbur phytoplasma vmp1 gene in grapevines, bindweeds and vegetables.

Sergio Murolo; Carmine Marcone; Vanda Assunta Prota; Raimondo Garau; Xavier Foissac; Gianfranco Romanazzi

Aim:u2002 Evaluation of the genetic variability of stolbur phytoplasma infecting grapevines, bindweeds and vegetables, collected in different central and southern Italian regions.


European Journal of Plant Pathology | 2012

Occurrence and incidence of phytoplasmas of the 16SrII-D subgroup on solanaceous and cucurbit crops in Egypt

Ayman F. Omar; Xavier Foissac

Symptoms reminiscent of phytoplasma infection were observed in four provinces (governorates) of Egypt in fields of eggplants, tomato plants and squash. Diseased plants exhibited stunting, leaf yellows and flower development abnormalities. PCR amplification of 16SrDNA with phytoplasma-specific primer pairs confirmed the phytoplasma presence. Sequencing and phylogenetic analysis indicated that all phytoplasmas had the same partial 16SrDNA sequence, assigning them to the 16SrII-D phytoplasma subgroup. Disease incidence was about 1% among the 20 squash fields surveyed and equally varied from 4% to 15% in the 20 eggplant fields and in the 40 tomato fields inspected. The widespread distribution of this phytoplasma in annual solanaceous and cucurbit crops suggests a wider plant host range including wild plants that could act as reservoir and insist on the need for a insect vector survey. A finer genetic differentiation of Egyptian 16SrII-D phytoplasma strains from different geographical origins and different host plants should help to better trace such epidemics.


Microbiology | 2008

A chromosome map of the Flavescence doree phytoplasma.

Sylvie Malembic-Maher; Fiona Constable; Agnès Cimerman; Guillaume Arnaud; Patricia Carle; Xavier Foissac; Elisabeth Boudon-Padieu

The Flavescence dorée phytoplasma (FD-P), a non-cultivable, plant-pathogenic bacterium of the class Mollicutes, is the causal agent of a quarantine disease affecting vineyards of southern Europe, mainly in southern France and northern Italy. To investigate FD-P diversity and phytoplasma genetic determinants governing the FD-P life cycle, a genome project has been initiated. A physical map of the chromosome of FD-P strain FD92, purified from infected broad beans, was constructed by performing restriction digests of the chromosome and resolving the fragments by PFGE. Single and double digestions of the chromosome with the enzymes SalI, BssHII, MluI and EagI were performed and used to map 13 restriction sites on the FD-P chromosome. The size of the chromosome was calculated to be 671 kbp. Southern blot analyses using cloned phytoplasma probes were carried out to assist in the arrangement of contiguous restriction fragments and to map eight genetic loci, including the two rRNA operons, the tuf, uvrB-degV and secY-map (FD9) genes, the FD2 marker and two orphan sequences (FDDH29 and FDSH05) isolated through subtractive suppression hybridization.


BMC Genomics | 2014

RNA-Seq profile of flavescence dorée phytoplasma in grapevine

Simona Abbà; Luciana Galetto; Patricia Carle; Sébastien Carrère; Massimo Delledonne; Xavier Foissac; Sabrina Palmano; Flavio Veratti; Cristina Marzachì

BackgroundThe phytoplasma-borne disease flavescence dorée is still a threat to European viticulture, despite mandatory control measures and prophylaxis against the leafhopper vector. Given the economic importance of grapevine, it is essential to find alternative strategies to contain the spread, in order to possibly reduce the current use of harmful insecticides. Further studies of the pathogen, the vector and the mechanisms of phytoplasma-host interactions could improve our understanding of the disease. In this work, RNA-Seq technology followed by three de novo assembly strategies was used to provide the first comprehensive transcriptomics landscape of flavescence dorée phytoplasma (FD) infecting field-grown Vitis vinifera leaves.ResultsWith an average of 8300 FD-mapped reads per library, we assembled 347 sequences, corresponding to 215 annotated genes, and identified 10 previously unannotated genes, 15 polycistronic transcripts and three genes supposedly localized in the gaps of the FD92 draft genome. Furthermore, we improved the annotation of 44 genes with the addition of 5′/3′ untranslated regions. Functional classification revealed that the most expressed genes were either related to translation and protein biosynthesis or hypothetical proteins with unknown function. Some of these hypothetical proteins were predicted to be secreted, so they could be bacterial effectors with a potential role in modulating the interaction with the host plant. Interestingly, qRT-PCR validation of the RNA-Seq expression values confirmed that a group II intron represented the FD genomic region with the highest expression during grapevine infection. This mobile element may contribute to the genomic plasticity that is necessary for the phytoplasma to increase its fitness and endorse host-adaptive strategies.ConclusionsThe RNA-Seq technology was successfully applied for the first time to analyse the FD global transcriptome profile during grapevine infection. Our results provided new insights into the transcriptional organization and gene structure of FD. This may represent the starting point for the application of high-throughput sequencing technologies to study differential expression in FD and in other phytoplasmas with an unprecedented resolution.


International Journal of Systematic and Evolutionary Microbiology | 2009

rRNA operons and genome size of 'Candidatus Liberibacter americanus', a bacterium associated with citrus huanglongbing in Brazil.

N. A. Wulff; Sandrine Eveillard; Xavier Foissac; Antonio Juliano Ayres; Joseph M. Bové

Huanglongbing is one of the most severe diseases of citrus worldwide and is associated with Candidatus (Ca.) Liberibacter africanus in Africa, Ca. Liberibacter asiaticus in Asia and the Americas (Brazil, USA and Cuba) and Ca. Liberibacter americanus (Lam) in Brazil. In the absence of axenic cultures, genetic information on liberibacters is scarce. The sequences of the entire 23S rRNA and 5S rRNA genes from Lam have now been obtained, using a consensus primer designed on known tRNAMet sequences of rhizobia. The size of the Lam genome was determined by PFGE, using Lam-infected periwinkle plants for bacterial enrichment, and was found to be close to 1.31 Mbp. In order to determine the number of ribosomal operons on the Lam genome, probes designed to detect the 16S rRNA gene and the 3 end of the 23S rRNA gene were developed and used for Southern hybridization with I-CeuI-treated genomic DNA. Our results suggest that there are three ribosomal operons in a circular genome. Lam is the first liberibacter species for which such data are available.


BMC Microbiology | 2015

Heterologous expression and processing of the flavescence dorée phytoplasma variable membrane protein VmpA in Spiroplasma citri

Joël Renaudin; Laure Béven; Brigitte Batailler; Sybille Duret; Delphine Desqué; Nathalie Arricau-Bouvery; Sylvie Malembic-Maher; Xavier Foissac

BackgroundFlavescence dorée (FD) of grapevine is a phloem bacterial disease that threatens European vineyards. The disease is associated with a non-cultivable mollicute, a phytoplasma that is transmitted by the grapevine leafhopper Scaphoideus titanus in a persistent, propagative manner. The specificity of insect transmission is presumably mediated through interactions between the host tissues and phytoplasma surface proteins comprising the so-called variable membrane proteins (Vmps). Plant spiroplasmas and phytoplasmas share the same ecological niches, the phloem sieve elements of host plants and the hemocoel of insect vectors. Unlike phytoplasmas, however, spiroplasmas, and Spiroplasma citri in particular, can be grown in cell-free media and genetically engineered. As a new approach for studying phytoplasmas-insect cell interactions, we sought to mimic phytoplasmas through the construction of recombinant spiroplasmas exhibiting FD phytoplasma Vmps at the cell surface.ResultsHere, we report the expression of the FD phytoplasma VmpA in S. citri. Transformation of S. citri with plasmid vectors in which the vmpA coding sequence was under the control of the S. citri tuf gene promoter resulted in higher accumulation of VmpA than with the native promoter. Expression of VmpA at the spiroplasma surface was achieved by fusing the vmpA coding sequence to the signal peptide sequence of the S. citri adhesin ScARP3d, as revealed by direct colony immunoblotting and immunogold labelling electron microscopy. Anchoring of VmpA to the spiroplasma membrane was further demonstrated by Triton X-114 protein partitioning and Western immunoblotting. Using the same strategy, the secretion of free, functionally active β-lactamase (used as a model protein) into the culture medium by recombinant spiroplasmas was achieved.ConclusionsConstruction of recombinant spiroplasmas harbouring the FD phytoplasma variable membrane protein VmpA at their surface was achieved, which provides a new biological approach for studying interactions of phytoplasma surface proteins with host cells. Likewise, the secretion of functional β-lactamase by recombinant spiroplasmas established the considerable promise of the S. citri expression system for delivering phytoplasma effector proteins into host cells.


European Journal of Plant Pathology | 2011

Detection of ‘Candidatus Phytoplasma brasiliense’ in a new geographic region and existence of two genetically distinct populations’

Gulnara Balakishiyeva; Madat Qurbanov; Alamdar Mammadov; Shaniyar Bayramov; Jalal A. Aliyev; Xavier Foissac

Abstract‘Candidatus Phytoplasma brasiliense’, a phytoplasma taxon associated with hibiscus witches’ broom disease was first described in 2001 in Brazil. In September 2007, a peach tree (Prunus persica) displaying yellowing symptoms reminiscent of phytoplasma infection was sampled in Guba region of Azerbaijan. A phytoplasma was detected in the diseased peach tree by nested PCR amplification of its 16S rDNA with universal primers for phytoplasmas. Phylogenetical analyses of the amplified 16S rDNA showed that the phytoplasma infecting the peach tree corresponded to ‘Ca. P. brasiliense’, a species never reported in Euro-Mediterranean area. To set up a detection assay, cloning of a ‘Ca. P. brasiliense’ DNA fragment was undertaken by comparative RAPD. The amplified dnaK-dnaJ genetic locus was used to design a nested PCR assay able to amplify all ‘Ca. P. brasiliense’ isolates of the subgroup 16SrXV-A without amplifying the related members of the group 16SrII. This assay also allowed confirming the first detection of ‘Ca. P. brasiliense’ in diseased basil collected in south Lebanon.


European Journal of Plant Pathology | 2018

Important genetic diversity of ‘Candidatus Phytoplasma solani’ related strains associated with bois noir grapevine yellows and planthoppers in Azerbaijan

G. Balakishiyeva; J. Bayramova; Alamdar Mammadov; Pascal Salar; Jean-Luc Danet; Ibolya Ember; Eric Verdin; Xavier Foissac; Irada M. Huseynova

Bois noir (BN) is an important grapevine yellows endemic to the Euro-Mediterranean basin caused by ‘Candidatus Phytoplasma solani’ (‘Ca. P. solani’), a non culturable plant pathogenic Mollicute. Bois noir symptoms could be associated with ‘Ca. P. solani’ in two Azerbaijanian vineyards where disease incidence and severity were recorded for five local Vitis vinifera cultivars. In order to gain insight into the epidemiology of Bois noir in Azerbaijan, ‘Ca. P. solani’ isolates infecting plants were characterized by multi-locus sequence analysis and their secY and stamp gene sequences compared to that of the strains detected in other plants and in local Cixiidae planthoppers. Genotypes were determined for two non-ribosomal house-keeping genes, namely tuf and secY, as well as two variable markers namely Stamp and mleP1 genes, that respectively encode the antigenic membrane protein AMP and a 2-Hydroxycarboxylate transporter. The Azerbaijanian BN phytoplasma isolates corresponded to three tufB and secY genotypes. A finer differentiation of Azerbaijanian ‘Ca. P. solani’ isolates was obtained with mleP1 as five different mleP1 genetic variants were found. Finally, Stamp gene allowed differentiating four new genotypes in grapevine among the 10 new Stamp genotypes detected in various plants in Azerbaijan. The preliminary survey for infected insects conducted in northern Azerbaijan, led to the identification of Hyalesthes obsoletus and Reptalus noahi as potential vectors for two ‘Ca. P. solani’ new genotypes phylogenetically distant from the known genetic clusters. Altogether these results indicate an important genetic diversity of BN phytoplasmas in Azerbaijan that certainly result from spread through local insect vectors.

Collaboration


Dive into the Xavier Foissac's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brigitte Batailler

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph M. Bové

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Laure Béven

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge