Xavier Franch-Marro
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xavier Franch-Marro.
Developmental Cell | 2011
Kyra Campbell; Gavin Whissell; Xavier Franch-Marro; Eduard Batlle; Jordi Casanova
The epithelial-to-mesenchymal transition (EMT) converts cells from static epithelial to migratory mesenchymal states (Hay, 1995). Here, we demonstrate that EMT in the Drosophila endoderm is dependent on the GATA-factor Serpent (Srp), and that Srp acts as a potent trigger for this transition when activated ectopically. We show that Srp affects endodermal-EMT through a downregulation of junctional dE-Cadherin (dE-Cad) protein, without a block in its transcription. Moreover, the relocalization of dE-Cad is achieved through the direct repression of crumbs (crb) by Srp. Finally, we show that hGATA-6, an ortholog of Srp, induces a similar transition in mammalian cells. Similar to Srp, hGATA-6 acts through the downregulation of junctional E-Cad, without blocking its transcription, and induces the repression of a Crumbs ortholog, crb2. Together, these results identify a set of GATA factors as a conserved alternative trigger to repress epithelial characteristics and confer migratory capabilities on epithelial cells in development and pathogenesis.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Enric Ureña; Cristina Manjón; Xavier Franch-Marro; David Martin
Significance Transformation from immature to a fully reproductive adult form is an essential process during the development of higher organisms. In insects, transition from juvenile to adult stages is triggered by the decline of the juvenile hormone, but the molecular mechanisms underlying the dramatic morphological and physiological changes remain poorly understood. Here, we report that a single factor, E93, controls juvenile-to-adult transition in hemimetabolous and holometabolous insects, thus acting as the universal adult specifier in winged insects. Interestingly, we find that E93 not only promotes adult metamorphosis but also represses the expression of the antimetamorphic genes Krüppel-homolog 1 and Broad-Complex, ensuring the proper juvenile–adult transition. This study represents a significant step toward defining the molecular mechanisms underlying insect metamorphosis. All immature animals undergo remarkable morphological and physiological changes to become mature adults. In winged insects, metamorphic changes either are limited to a few tissues (hemimetaboly) or involve a complete reorganization of most tissues and organs (holometaboly). Despite the differences, the genetic switch between immature and adult forms in both types of insects relies on the disappearance of the antimetamorphic juvenile hormone (JH) and the transcription factors Krüppel-homolog 1 (Kr-h1) and Broad-Complex (BR-C) during the last juvenile instar. Here, we show that the transcription factor E93 is the key determinant that promotes adult metamorphosis in both hemimetabolous and holometabolous insects, thus acting as the universal adult specifier. In the hemimetabolous insect Blattella germanica, BgE93 is highly expressed in metamorphic tissues, and RNA interference (RNAi)-mediated knockdown of BgE93 in the nymphal stage prevented the nymphal–adult transition, inducing endless reiteration of nymphal development, even in the absence of JH. We also find that BgE93 down-regulated BgKr-h1 and BgBR-C expression during the last nymphal instar of B. germanica, a key step necessary for proper adult differentiation. This essential role of E93 is conserved in holometabolous insects as TcE93 RNAi in Tribolium castaneum prevented pupal–adult transition and produced a supernumerary second pupa. In this beetle, TcE93 also represses expression of TcKr-h1 and TcBR-C during the pupal stage. Similar results were obtained in the more derived holometabolous insect Drosophila melanogaster, suggesting that winged insects use the same regulatory mechanism to promote adult metamorphosis. This study provides an important insight into the understanding of the molecular basis of adult metamorphosis.
Journal of extracellular vesicles | 2013
Franz Wendler; Neus Bota-Rabassedas; Xavier Franch-Marro
Extracellular vesicles (EVs), including exosomes, have been widely recognized for their role in intercellular communication of the immune response system. In the past few years, significance has been given to exosomes in the induction and modulation of cell-fate-inducing signalling pathways, such as the Hedgehog (Hh), Wnts, Notch, transforming growth factor (TGF-β), epidermal growth factor (EGF) and fibroblast growth factor (FGF) pathways, placing them in the wider context of development and also of cancer. These protein families induce signalling cascades responsible for tissue specification, homeostasis and maintenance. Exosomes contribute to cell-fate signal secretion, and vice versa exosome secretion can be induced by these proteins. Interestingly, exosomes can also transfer their mRNA to host cells or modulate the signalling pathways directly by the removal of downstream effector molecules from the cell. Surprisingly, much of what we know about the function of exosomes in cell determination is gathered from pathological transformed cancer cells and wound healing while data about their biogenesis and biology in normal developing and adult tissue lag behind. In this report, we will summarize some of the published literature and point to current advances and questions in this fast-developing topic. In a brief foray, we will also update and shortly discuss their potential in diagnosis and targeted cancer treatment.
PLOS Genetics | 2016
Enric Ureña; Silvia Chafino; Cristina Manjón; Xavier Franch-Marro; David Martin
Complete metamorphosis (Holometaboly) is a key innovation that underlies the spectacular success of holometabolous insects. Phylogenetic analyses indicate that Holometabola form a monophyletic group that evolved from ancestors exhibiting hemimetabolous development (Hemimetaboly). However, the nature of the changes underlying this crucial transition, including the occurrence of the holometabolan-specific pupal stage, is poorly understood. Using the holometabolous beetle Tribolium castaneum as a model insect, here we show that the transient up-regulation of the anti-metamorphic Krüppel-homolog 1 (TcKr-h1) gene at the end of the last larval instar is critical in the formation of the pupa. We find that depletion of this specific TcKr-h1 peak leads to the precocious up-regulation of the adult-specifier factor TcE93 and, hence, to a direct transformation of the larva into the adult form, bypassing the pupal stage. Moreover, we also find that the TcKr-h1-dependent repression of TcE93 is critical to allow the strong up-regulation of Broad-complex (TcBr-C), a key transcription factor that regulates the correct formation of the pupa in holometabolous insects. Notably, we show that the genetic interaction between Kr-h1 and E93 is also present in the penultimate nymphal instar of the hemimetabolous insect Blattella germanica, suggesting that the evolution of the pupa has been facilitated by the co-option of regulatory mechanisms present in hemimetabolan metamorphosis. Our findings, therefore, contribute to the molecular understanding of insect metamorphosis, and indicate the evolutionary conservation of the genetic circuitry that controls hemimetabolan and holometabolan metamorphosis, thereby shedding light on the evolution of complete metamorphosis.
Cell Reports | 2014
Nareg J.-V. Djabrayan; Josefa Cruz; Cristina de miguel; Xavier Franch-Marro; Jordi Casanova
A population of Drosophila adult tracheal progenitor cells arises from differentiated cells of the larval main trachea that retain the ability to reenter the cell cycle and give rise to the multiple adult tracheal cell types. These progenitors are unique to the second tracheal metamere as homologous cells from other segments, express fizzy-related (fzr), the Drosophila homolog of CDH1 protein of the APC complex, and enter endocycle and do not contribute to adult trachea. Here, we examine the mechanisms for their quiescence and show that they reenter the cell cycle by expression of string/cdc25 through ecdysone. Furthermore, we show that preventing endocycle entry is both necessary and sufficient for these tracheal cells to exhibit markers of adult progenitors, thus modifying their genetic program. Finally, we show that Hox-mediated regulation of fzr expression is responsible for progenitor identity and thus specifies a group of differentiated cells with facultative stem cell features.
Scientific Reports | 2016
Josefa Cruz; Neus Bota-Rabassedas; Xavier Franch-Marro
How several signaling pathways are coordinated to generate complex organs through regulation of tissue growth and patterning is a fundamental question in developmental biology. The larval trachea of Drosophila is composed of differentiated functional cells and groups of imaginal tracheoblasts that build the adult trachea during metamorphosis. Air sac primordium cells (ASP) are tracheal imaginal cells that form the dorsal air sacs that supply oxygen to the flight muscles of the Drosophila adult. The ASP emerges from the tracheal branch that connects to the wing disc by the activation of both Bnl-FGF/Btl and EGFR signaling pathways. Together, these pathways promote cell migration and proliferation. In this study we demonstrate that Vein (vn) is the EGF ligand responsible for the activation of the EGFR pathway in the ASP. We also find that the Bnl-FGF/Btl pathway regulates the expression of vn through the transcription factor PointedP2 (PntP2). Furthermore, we show that the FGF target gene escargot (esg) attenuates EGFR signaling at the tip cells of the developing ASP, reducing their mitotic rate to allow proper migration. Altogether, our results reveal a link between Bnl-FGF/Btl and EGFR signaling and provide novel insight into how the crosstalk of these pathways regulates migration and growth.
Development | 2016
Cristina de Miguel; Friedemann Linsler; Jordi Casanova; Xavier Franch-Marro
It is not clear how simple genetic changes can account for the coordinated variations that give rise to modified functional organs. Here, we addressed this issue by analysing the expression and function of regulatory genes in the developing tracheal systems of two insect species. The larval tracheal system of Drosophila can be distinguished from the less derived tracheal system of the beetle Tribolium by two main features. First, Tribolium has lateral spiracles connecting the trachea to the exterior in each segment, while Drosophila has only one pair of posterior spiracles. Second, Drosophila, but not Tribolium, has two prominent longitudinal branches that distribute air from the posterior spiracles. Both innovations, while considered different structures, are functionally dependent on each other and linked to habitat occupancy. We show that changes in the domains of spalt and cut expression in the embryo are associated with the acquisition of each structure. Moreover, we show that these two genetic modifications are connected both functionally and genetically, thus providing an evolutionary scenario by which a genetic event contributes to the joint evolution of functionally inter-related structures. Summary: Changes in the expression domains of the spalt and cut transcription factors are associated with the acquisition of tracheal morphology innovations in insects.
Scientific Reports | 2017
M. M. Rahman; Xavier Franch-Marro; José L. Maestro; David Martín; A. Casali
Hormones play essential roles during development and maintaining homeostasis in adult organisms, regulating a plethora of biological processes. Generally, hormones are secreted by glands and perform a systemic action. Here we show that Juvenile Hormones (JHs), insect sesquiterpenoids synthesized by the corpora allata, are also synthesized by the adult Drosophila gut. This local, gut specific JH activity, is synthesized by and acts on the intestinal stem cell and enteroblast populations, regulating their survival and cellular growth through the JH receptors Gce/Met and the coactivator Tai. Furthermore, we show that this local JH activity is important for damage response and is necessary for intestinal tumor growth driven by activating mutations in Wnt and EGFR/Ras pathways. Together, our results identify JHs as key hormonal regulators of gut homeostasis and open the possibility that analogous hormones may play a similar role in maintaining vertebrate adult intestinal stem cell population and sustaining tumor growth.
PLOS Genetics | 2018
Kyra Campbell; Gaëlle Lebreton; Xavier Franch-Marro; Jordi Casanova
Several transcription factors have been identified that activate an epithelial-to-mesenchymal transition (EMT), which endows cells with the capacity to break through basement membranes and migrate away from their site of origin. A key program in development, in recent years it has been shown to be a crucial driver of tumour invasion and metastasis. However, several of these EMT-inducing transcription factors are often expressed long before the initiation of the invasion-metastasis cascade as well as in non-invasive tumours. Increasing evidence suggests that they may promote primary tumour growth, but their precise role in this process remains to be elucidated. To investigate this issue we have focused our studies on two Drosophila transcription factors, the classic EMT inducer Snail and the Drosophila orthologue of hGATAs4/6, Serpent, which drives an alternative mechanism of EMT; both Snail and GATA are specifically expressed in a number of human cancers, particularly at the invasive front and in metastasis. Thus, we recreated conditions of Snail and of Serpent high expression in the fly imaginal wing disc and analysed their effect. While either Snail or Serpent induced a profound loss of epithelial polarity and tissue organisation, Serpent but not Snail also induced an increase in the size of wing discs. Furthermore, the Serpent-induced tumour-like tissues were able to grow extensively when transplanted into the abdomen of adult hosts. We found the differences between Snail and Serpent to correlate with the genetic program they elicit; while activation of either results in an increase in the expression of Yorki target genes, Serpent additionally activates the Ras signalling pathway. These results provide insight into how transcription factors that induce EMT can also promote primary tumour growth, and how in some cases such as GATA factors a ‘multi hit’ effect may be achieved through the aberrant activation of just a single gene.
Developmental Biology | 2000
Xavier Franch-Marro; Jordi Casanova