Xavier López
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xavier López.
Chemical Society Reviews | 2003
Josep M. Poblet; Xavier López; Carles Bo
In this review we summarise the quantum chemistry studies carried out by several groups over the last ten years on polyoxometalates, or polyoxoanions. This is an immense family of compounds made up of transition metal ions in their highest oxidation state and oxo ligands. The continuous progress of computers in general, and quantum chemistry software in particular, has enabled a number of topics in polyoxometalate chemistry to be studied from the electronic structure of the most representative polyoxometalate, the so-called Keggin anion, to the factors governing the inclusion complexes and the magnetism in reduced complexes.
Journal of the American Chemical Society | 2008
Li‐Kai Yan; Xavier López; Jorge J. Carbó; Richard Sniatynsky; Dean C. Duncan; Josep M. Poblet
Alternating short and long bond length (ABL) distortions observed within the ring structures of molecular metal oxide anions or polyoxometalates (POMs) are reminiscent of the cooperative linear ABL distortions in perovskite d(0) metal oxides. We show herein that these distortions have a common origin: a pseudo Jahn-Teller (PJT) vibronic instability. Four POM structural types with different M(n)O(n) ring sizes are investigated herein using density functional theoretical methods: Lindqvist [M6O19](q-) (n = 4), Keggin alpha-[XM12O40](q-) (n = 6), Wells-Dawson alpha-[X2M18O62](q-) (n = 8), and Preyssler [(Na)P5W30O110](14-) (n = 10), where M = Mo(VI) and W(VI) and X = Si(IV), Ge(IV), P(V), As(V), S(VI), and Se(VI). Chirality is induced within the latter three structural types by the ABL ring distortions. The calculations confirm the PJT vibronic origin of the ABL distortions with good agreement between calculated geometries and published single-crystal X-ray diffraction data. Both theory and experiment show that the vibronic interaction and distortion magnitude increase for (1) molybdates relative to that of tungstates, (2) larger M(n)O(n) ring sizes, (3) increases in negative charge of the internalized fragments (O(2-) or XO4(q-)), and (4) d(0) versus d(n) metal oxidation states. The PJT vibronic coupling model explains these observations in terms of the energy gap between Kohn-Sham frontier molecular orbitals (MOs) concomitant with the propensity for metal-oxygen pi-bonding within the M(n)O(n) rings. The frontier MOs for the undistorted nuclear configurations are largely nonbonding pi-O(p) (occupied) and pi-M(d) (unoccupied) in character, where smaller HOMO-LUMO (H-L) gap energies lead to greater metal-oxygen pi-orbital mixing under the influence of the nuclear distortion. A reduction in pi-bond order decreases the distortion in mixed-valence POMs. Of the tungstates examined, only the Preyssler anion shows pronounced ABL ring distortions, which derive from its large ring size and concomitant small H-L gap.
Dalton Transactions | 2006
Xavier López; Jorge A. Fernández; Josep M. Poblet
In this paper we study the electronic structure of Lindqvist, Keggin, Dawson and Preyssler polyoxometalates (POMs) at the DFT level, particularly their LUMOs and reduction energies. Our aim was to revisit the previously reported evidence that a linear relationship exists between reduction potentials and molecular charges in Keggin anions. In this line of thought, we calculated one simple structural parameter-volume of the clusters-so that the corresponding volume charge density, rho(v), could be estimated. Contrary to what we expected, the connection between rho(v) and the experimental reduction potentials is not evident since q/V itself does not justify the scale of oxidizing powers. Complementary calculations were performed using the clathrate model, anion@W(m)O(3m), analyzing separately the effects of the size of the neutral cages and the molecular charge, q, upon the redox properties. The parameter m emulates the size (volume) of the clusters, only approximately, but with the benefit that it is easily accounted for. A linear relationship was found between the difference in LUMO energies for the neutral and charged clusters and the q/m ratio.
Inorganic Chemistry | 2009
Sib Sankar Mal; Bassem S. Bassil; Masooma Ibrahim; Saritha Nellutla; Johan van Tol; N. S. Dalal; Jorge A. Fernández; Xavier López; Josep M. Poblet; Rosa Ngo Biboum; Bineta Keita; Ulrich Kortz
We have synthesized the known [Cu(20)Cl(OH)(24)(H(2)O)(12)(P(8)W(48)O(184))](25-) (1) and report here its bromide and iodide analogues, [Cu(20)Br(OH)(24)(H(2)O)(12)(P(8)W(48)O(184))](25-) (2) and [Cu(20)I(OH)(24)(H(2)O)(12)(P(8)W(48)O(184))](25-) (3). These polyanions were characterized in the solid state by IR spectroscopy and single-crystal X-ray diffraction. Magnetic susceptibility and magnetization data over 1.8-300 K show that the Cu(2+) ions in 1-2 are antiferromagnetically coupled, leading to a diamagnetic ground state. The effective exchange coupling constant J(eff) was estimated as approximately -3 K for both 1 and 2. Electron paramagnetic resonance measurements were made on 1 and 2 over 5-295 K at microwave frequencies of 9.5, 34, and 220 GHz. The observed (weak) signals were characteristic of randomly distributed Cu(2+) ions only, with g values and hyperfine constants typical of the unpaired electron in a 3d(x(2)-y(2)) orbital of Cu(2+). No signals attributable to the copper-hydroxo cluster were detected, supporting the conclusions from the magnetization measurements. DFT calculations were performed as well to obtain additional information on the anionic guest inside the cavity created by the copper-hydroxo cage related to electronic structure and energies of encapsulation. The polyanions 2 and 3 were also characterized by cyclic voltammetry (CV) in a pH 5 medium. Their CVs are composed by an initial two-step reduction of the Cu(2+) centers to Cu(0) through Cu(+), followed at more negative potential by the redox processes of the W centers. A comparison with the CV characteristics of the previously studied compound 1 indicates that the potential locations of the Cu or W waves of the three analogues do not depend significantly upon the identity of the central halide X. This observation is in accordance with conclusions of DFT calculations. The modified electrodes based on 2 and the room-temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate triggers an efficient reduction of nitrate. To our knowledge, this is the first example of electrocatalytic nitrate reduction by a polyanion entrapped in room-temperature ionic liquid films.
Inorganic Chemistry | 2010
Ilsraël-Martyr Mbomekalle; Xavier López; Josep M. Poblet; Francis Sécheresse; Bineta Keita; Louis Nadjo
The apparent formal potentials for the one-electron redox process of most Keggin-type heteropolytungstates, XW(12)O(40)(q-), have long been shown to linearly depend on their overall negative charges, in the absence of proton interference in the process. However, for a given overall negative charge, these formal potentials are also shown here to depend on the specific central heteroatom X. In the present work, cyclic voltammetry was used to study a large variety of Keggin-type anions, under conditions where their comparisons are straightforward. In short, apparent potential values get more negative (the clusters are more difficult to reduce) for smaller central heteroatoms within a given family of Keggin-type heteropolyanions carrying the same overall negative charge. Density functional theory calculations were performed on the same family of Keggin compounds and satisfactorily reproduce these trends. They show that internal XO(4) units affect differently the tungstate oxide cage. The electrostatic potential created by each internal anionic unit in a fragment-like approach (XO(4)(q-)@W(12)O(36)) was analyzed, and it is observed that X atoms of the same group show slight differences. Within each group of the periodic table, X atoms with lower atomic numbers are also smaller in size. The net effect of such a tendency is to produce a more negative potential in the surroundings and thus a smaller capacity to accept electrons. The case of [BW(12)O(40)](5-) illustrates well this conclusion, with the smallest heteroatom of the Keggin series with group III central elements and a very negative reduction potential with respect to the other elements of the same group. Particularly in this case, the electronic structure of the Keggin anion shows the effects of the small size of boron: the highest occupied molecular orbitals of [BW(12)O(40)](5-) appear to be approximately 0.35 eV higher than those in the other clusters of the same charge, explaining that the BO(4) unit is more unstable than AlO(4) or GaO(4) despite carrying the same formal charge.
Chemistry: A European Journal | 2011
Hani El Moll; Brigitte Nohra; Pierre Mialane; Jérôme Marrot; Nathalie Dupré; Benoît Riflade; Max Malacria; Serge Thorimbert; Bernold Hasenknopf; Emmanuel Lacôte; Pablo A. Aparicio; Xavier López; Josep M. Poblet; Anne Dolbecq
The [ε-PMo(V)(8)Mo(VI)(4)O(36)(OH)(4){Ln(III)(H(2)O)}(4)](5+) (Ln=La, Ce, Nd, Sm) polyoxocations, called εLn(4), have been synthesized at room temperature as chloride salts soluble in water, MeOH, EtOH, and DMF. Rare-earth metals can be exchanged, and (31)P NMR spectroscopic studies have allowed a comparison of the affinity of the reduced {ε-PMo(12)} core, thus showing that the La(III) ions have the highest affinity and that rare earths heavier than Eu(III) do not react with the ε-Keggin polyoxometalate. DFT calculations provide a deeper insight into the geometries of the systems studied, thereby giving more accurate information on those compounds that suffer from disorder in crystalline form. It has also been confirmed by the hypothetical La→Gd substitution reaction energy that Ln ions beyond Eu cannot compete with La in coordinating the surface of the ε-Keggin molybdate. Two of these clusters (Ln=La, Ce) have been tested to evidence that such systems are representative of a new efficient Lewis acid catalyst family. This is the first time that the catalytic activity of polyoxocations has been evaluated.
Journal of the American Chemical Society | 2012
Jérôme Marrot; Marie Anne Pilette; Mohamed Haouas; Sébastien Floquet; Francis Taulelle; Xavier López; Josep M. Poblet; Emmanuel Cadot
The chemical system based on the [Mo(2)O(2)S(2)(OH(2))(6)](2+) aqua cation (noted L) and the trivacant [AsW(9)O(33)](9-) polyoxometalate (noted POM) has been investigated. Depending upon the ionic strength and the nature of the alkali cations, these complementary components assemble to yield three different architectures derived as hexamer (1), tetramer (2), and dimer (3). This series of clusters displays the same stoichiometry {POM(6)L(9)}(36-), {POM(4)L(6)}(24-), and {POM(2)L(3)}(12-) for 1, 2, and 3, respectively, and their conditions of formation differ mainly by the nature and the concentration of the alkali cation (from Li to Cs). Structural characterizations of 1 reveal a large hexameric supramolecular scaffold (about 25 Å in diameter), which encloses a large internal hole (about 200 Å(3)) filled by water molecules and alkali cations (Na(+) or K(+)). The hexameric scaffold 1 exhibits a rare flexibility property evidenced in the solid state by two distinct conformations, either eclipsed (1a) or staggered-off (1b). Both conformations appear clearly separated by a large twist angle (~40°) and depend mainly on the composition of the internal hole. Structure of anion 2 shows a tetrahedral arrangement where the four POM units and the six connecting {Mo(2)O(2)S(2)} linkers are located at the corners and at the edges, respectively. The structure of anion 3 corresponds to the simplest arrangement, described as a dimeric association of two POM units linked by three {Mo(2)S(2)O(2)} pillars. Stability of the hexameric scaffold has been investigated in solution by (183)W and (39)K NMR and by UV-vis, showing that stability of 1 depends strongly on the proportion of potassium ions, which interfere through host-guest exchange. Density functional methodology (DFT) has been applied to compute the geometries and energies of dimer (3), tetramer (2) and hexamer (1) based on {AsW(9)O(33)} (POM) and {Mo(2)O(2)S(2)} (L) units. Calculations tend to show that internal cations act as glue to maintain the POM units connected through the conformationally inward-directed {Mo(2)O(2)S(2)} linkers.
Journal of Computational Chemistry | 2004
Xavier López; Jorge A. Fernández; Susanna Romo; Jean-François Paul; Leonid P. Kazansky; Josep M. Poblet
DFT calculations were driven for a set of differently charged polyoxoanions in the gas phase and in solution. We have calculated and analyzed their geometries and orbital energies to trace simple rules of behavior regarding the modeling of anions in isolated form. We discuss the quality of the results depending on the molecular charge, q, and the size of the cluster in terms of the number of metal centers, m. When the q/m ratio reaches a value of ∼0.8, DFT calculations for the isolated anion fail to describe the gap between the band of occupied oxo orbitals and the set of unoccupied orbitals delocalized among the metal atoms. In these cases the incorporation of the stabilizing external fields generated by the solvent through continuum models improves the geometries and orbital energies.
Dalton Transactions | 2014
Alessio Ghisolfi; Kirill Yu. Monakhov; Roberto Pattacini; Pierre Braunstein; Xavier López; Coen de Graaf; Manfred Speldrich; Jan van Leusen; Helmut Schilder; Paul Kögerler
We describe the synthesis, structures, and magnetochemistry of new M4Cl4 cubane-type cobalt(II) and nickel(II) complexes with the formula [M(μ3-Cl)Cl(HL·S)]4 (1: M = Co; 2: M = Ni), where HL·S represents a pyridyl-alcohol-type ligand with a thioether functional group, introduced to allow subsequent binding to Au surfaces. Dc and ac magnetic susceptibility data of 1 and 2 were modeled with a full spin Hamiltonian implemented in the computational framework CONDON 2.0. Although both coordination clusters 1 and 2 are isostructural, with each of their transition metal ions in a pseudo-octahedral coordination environment of four Cl atoms and N,O-donor atoms of one chelating HL·S ligand, the substantially different ligand field effects of Co(II) and Ni(II) results in stark differences in their magnetism. In contrast to compound 1 which exhibits a dominant antiferromagnetic intramolecular coupling (J = -0.14 cm(-1)), 2 is characterised by a ferromagnetic coupling (J = +10.6 cm(-1)) and is considered to be a single-molecule magnet (SMM), a feature of special interest for future surface deposition studies. An analysis based on density functional theory (DFT) was performed to explore possible magnetostructural correlations in these compounds. Using a two-J model Hamiltonian, it revealed that compound 1 has four positive and two (small) negative J(Co···Co) isotropic interactions leading to a S(HS) = 6 ground state. Taking into account the magnetic anisotropy, one would recover a M(S) = 0 ground state since D > 0 from computations. In 2, all the J constants are positive and, in this framework, the zero-field splitting energy characterising the axial anisotropy was estimated to be negative (D = -0.44 cm(-1)). The computational results are consistent with compound 2 being an SMM.
Chemistry: A European Journal | 2015
Kirill Yu. Monakhov; Oliver Linnenberg; Piotr Kozłowski; Jan van Leusen; Claire Besson; Tim Secker; Arkady Ellern; Xavier López; Josep M. Poblet; Paul Kögerler
Mixed-valence polyoxovanadates(IV/V) have emerged as one of the most intricate class of supramolecular all-inorganic host species, able to encapsulate a wide variety of smaller guest templates during their self-assembly formation process. As showcased herein, the incorporation of guests, though governed solely by ultra-weak electrostatic and van der Waals interactions, can cause drastic effects on the electronic and magnetic characteristics of the shell complex of the polyoxovanadate. We address the question of methodology for the magnetochemical analysis of virtually isostructural {V(IV/V) 22 O54 }-type polyoxoanions of D2d symmetry enclosing diamagnetic VO2 F2 (-) (C2v ), SCN(-) (C∞v ), or ClO4 (-) (Td ) template anions. These induce different polarization effects related to differences in their geometric structures, symmetry, ion radii, and valence shells, eventually resulting in a supramolecular modulation of magnetic exchange between the V(3d) electrons that are partly delocalized over the {V22 O54 } shells. We also include the synthesis and characterization of the novel [V(V) O2 F2 @HV(IV) 8 V(V) 14 O54 ](6-) system that comprises the rarely encountered discrete difluorovanadate anion as a quasi-isolated guest species.