Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xenophon Papademetris is active.

Publication


Featured researches published by Xenophon Papademetris.


Psychological Science | 2010

Testing Predictions From Personality Neuroscience Brain Structure and the Big Five

Colin G. DeYoung; Jacob B. Hirsh; Matthew S. Shane; Xenophon Papademetris; Nallakkandi Rajeevan; Jeremy R. Gray

We used a new theory of the biological basis of the Big Five personality traits to generate hypotheses about the association of each trait with the volume of different brain regions. Controlling for age, sex, and whole-brain volume, results from structural magnetic resonance imaging of 116 healthy adults supported our hypotheses for four of the five traits: Extraversion, Neuroticism, Agreeableness, and Conscientiousness. Extraversion covaried with volume of medial orbitofrontal cortex, a brain region involved in processing reward information. Neuroticism covaried with volume of brain regions associated with threat, punishment, and negative affect. Agreeableness covaried with volume in regions that process information about the intentions and mental states of other individuals. Conscientiousness covaried with volume in lateral prefrontal cortex, a region involved in planning and the voluntary control of behavior. These findings support our biologically based, explanatory model of the Big Five and demonstrate the potential of personality neuroscience (i.e., the systematic study of individual differences in personality using neuroscience methods) as a discipline.


Proceedings of the National Academy of Sciences of the United States of America | 2007

The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome

Kitt Falk Petersen; Sylvie Dufour; David B. Savage; Stefan Bilz; Gina Solomon; Shin Yonemitsu; Gary W. Cline; Douglas E. Befroy; Laura Zemany; Barbara B. Kahn; Xenophon Papademetris; Douglas L. Rothman; Gerald I. Shulman

We examined the hypothesis that insulin resistance in skeletal muscle promotes the development of atherogenic dyslipidemia, associated with the metabolic syndrome, by altering the distribution pattern of postprandial energy storage. Following ingestion of two high carbohydrate mixed meals, net muscle glycogen synthesis was reduced by ≈60% in young, lean, insulin-resistant subjects compared with a similar cohort of age–weight–body mass index–activity-matched, insulin-sensitive, control subjects. In contrast, hepatic de novo lipogenesis and hepatic triglyceride synthesis were both increased by >2-fold in the insulin-resistant subjects. These changes were associated with a 60% increase in plasma triglyceride concentrations and an ≈20% reduction in plasma high-density lipoprotein concentrations but no differences in plasma concentrations of TNF-α, IL-6, adiponectin, resistin, retinol binding protein-4, or intraabdominal fat volume. These data demonstrate that insulin resistance in skeletal muscle, due to decreased muscle glycogen synthesis, can promote atherogenic dyslipidemia by changing the pattern of ingested carbohydrate away from skeletal muscle glycogen synthesis into hepatic de novo lipogenesis, resulting in an increase in plasma triglyceride concentrations and a reduction in plasma high-density lipoprotein concentrations. Furthermore, insulin resistance in these subjects was independent of changes in the plasma concentrations of TNF-α, IL-6, high-molecular-weight adiponectin, resistin, retinol binding protein-4, or intraabdominal obesity, suggesting that these factors do not play a primary role in causing insulin resistance in the early stages of the metabolic syndrome.


Diabetes | 2008

High Visceral and Low Abdominal Subcutaneous Fat Stores in the Obese Adolescent A Determinant of an Adverse Metabolic Phenotype

Sara E. Taksali; Sonia Caprio; James Dziura; Sylvie Dufour; Anna M.G. Cali; T. Robin Goodman; Xenophon Papademetris; Tania S. Burgert; Bridget Pierpont; Mary Savoye; Melissa Shaw; Aisha A. Seyal; Ram Weiss

OBJECTIVE— To explore whether an imbalance between the visceral and subcutaneous fat depots and a corresponding dysregulation of the adipokine milieu is associated with excessive accumulation of fat in the liver and muscle and ultimately with insulin resistance and the metabolic syndrome. RESEARCH DESIGN AND METHODS— We stratified our multi-ethnic cohort of 118 obese adolescents into tertiles based on the proportion of abdominal fat in the visceral depot. Abdominal and liver fat were measured by magnetic resonance imaging and muscle lipid (intramyocellular lipid) by proton magnetic resonance spectroscopy. RESULTS— There were no differences in age, BMI Z score, or fat-free mass across tertiles. However, as the proportion of visceral fat increased across tertiles, BMI and percentage of fat and subcutaneous fat decreased, while hepatic fat increased. In addition, there was an increase in 2-h glucose, insulin, c-peptide, triglyceride levels, and insulin resistance. Notably, both leptin and total adiponectin were significantly lower in tertile 3 than 1, while C-reactive protein and interleukin-6 were not different across tertiles. There was a significant increase in the odds ratio for the metabolic syndrome, with subjects in tertile 3 5.2 times more likely to have the metabolic syndrome than those in tertile 1. CONCLUSIONS— Obese adolescents with a high proportion of visceral fat and relatively low abdominal subcutaneous fat have a phenotype reminiscent of partial lipodystrophy. These adolescents are not necessarily the most severely obese, yet they suffer from severe metabolic complications and are at a high risk of having the metabolic syndrome.


IEEE Transactions on Medical Imaging | 2002

Estimation of 3-D left ventricular deformation from medical images using biomechanical models

Xenophon Papademetris; Albert J. Sinusas; Donna Dione; R.T. Constable; James S. Duncan

The quantitative estimation of regional cardiac deformation from three-dimensional (3-D) image sequences has important clinical implications for the assessment of viability in the heart wall. We present here a generic methodology for estimating soft tissue deformation which integrates image-derived information with biomechanical models, and apply it to the problem of cardiac deformation estimation. The method is image modality independent. The images are segmented interactively and then initial correspondence is established using a shape-tracking approach. A dense motion field is then estimated using a transversely isotropic, linear-elastic model, which accounts for the muscle fiber directions in the left ventricle. The dense motion field is in turn used to calculate the deformation of the heart wall in terms of strain in cardiac specific directions. The strains obtained using this approach in open-chest dogs before and after coronary occlusion, exhibit a high correlation with strains produced in the same animals using implanted markers. Further, they show good agreement with previously published results in the literature. This proposed method provides quantitative regional 3-D estimates of heart deformation.


Medical Image Analysis | 2001

Estimation of 3D Left Ventricular Deformation from Echocardiography

Xenophon Papademetris; Albert J. Sinusas; Donald P. Dione; James S. Duncan

The quantitative estimation of regional cardiac deformation from 3D image sequences has important clinical implications for the assessment of viability in the heart wall. Such estimates have so far been obtained almost exclusively from Magnetic Resonance (MR) images, specifically MR tagging. In this paper we describe a methodology for estimating cardiac deformations from 3D echocardiography (3DE). The images are segmented interactively and then initial correspondence is established using a shape-tracking approach. A dense motion field is then estimated using a transversely isotropic linear elastic model, which accounts for the fiber directions in the left ventricle. The dense motion field is in turn used to calculate the deformation of the heart wall in terms of strain in cardiac specific directions. The strains obtained using this approach in open-chest dogs before and after coronary occlusion, show good agreement with previously published results in the literature. They also exhibit a high correlation with strains produced in the same animals using implanted sonomicrometers. This proposed method provides quantitative regional 3D estimates of heart deformation from ultrasound images.


NeuroImage | 2008

More accurate Talairach coordinates for neuroimaging using non-linear registration

Cheryl Lacadie; Robert K. Fulbright; Nallakkandi Rajeevan; R. Todd Constable; Xenophon Papademetris

While the Talairach atlas remains the most commonly used system for reporting coordinates in neuroimaging studies, the absence of an actual 3-D image of the original brain used in its construction has severely limited the ability of researchers to automatically map locations from 3-D anatomical MRI images to the atlas. Previous work in this area attempted to circumvent this problem by constructing approximate linear and piecewise-linear mappings between standard brain templates (e.g. the MNI template) and Talairach space. These methods are limited in that they can only account for differences in overall brain size and orientation but cannot correct for the actual shape differences between the MNI template and the Talairach brain. In this paper we describe our work to digitize the Talairach atlas and generate a non-linear mapping between the Talairach atlas and the MNI template that attempts to compensate for the actual differences in shape between the two, resulting in more accurate coordinate transformations. We present examples in this paper and note that the method is available freely online as a Java applet.


International Journal of Medical Robotics and Computer Assisted Surgery | 2009

OpenIGTLink: an open network protocol for image-guided therapy environment

Junichi Tokuda; Gregory S. Fischer; Xenophon Papademetris; Ziv Yaniv; Luis Ibanez; Patrick Cheng; Haiying Liu; Jack Blevins; Jumpei Arata; Alexandra J. Golby; Tina Kapur; Steve Pieper; Everette Clif Burdette; Gabor Fichtinger; Clare M. Tempany; Nobuhiko Hata

With increasing research on system integration for image‐guided therapy (IGT), there has been a strong demand for standardized communication among devices and software to share data such as target positions, images and device status.


Nature Neuroscience | 2016

A neuromarker of sustained attention from whole-brain functional connectivity

Monica D. Rosenberg; Emily S. Finn; Dustin Scheinost; Xenophon Papademetris; Xilin Shen; R. Todd Constable; Marvin M. Chun

Although attention plays a ubiquitous role in perception and cognition, researchers lack a simple way to measure a persons overall attentional abilities. Because behavioral measures are diverse and difficult to standardize, we pursued a neuromarker of an important aspect of attention, sustained attention, using functional magnetic resonance imaging. To this end, we identified functional brain networks whose strength during a sustained attention task predicted individual differences in performance. Models based on these networks generalized to previously unseen individuals, even predicting performance from resting-state connectivity alone. Furthermore, these same models predicted a clinical measure of attention—symptoms of attention deficit hyperactivity disorder—from resting-state connectivity in an independent sample of children and adolescents. These results demonstrate that whole-brain functional network strength provides a broadly applicable neuromarker of sustained attention.


Cerebral Cortex | 2008

Effects of Working Memory Load on Oscillatory Power in Human Intracranial EEG

Jed A. Meltzer; Hitten P. Zaveri; Irina I. Goncharova; Marcello M. Distasio; Xenophon Papademetris; Susan S. Spencer; Dennis D. Spencer; R. Todd Constable

Studies of working memory load effects on human EEG power have indicated divergent effects in different frequency bands. Although gamma power typically increases with load, the load dependency of the lower frequency theta and alpha bands is uncertain. We obtained intracranial electroencephalography measurements from 1453 electrode sites in 14 epilepsy patients performing a Sternberg task, in order to characterize the anatomical distribution of load-related changes across the frequency spectrum. Gamma power increases occurred throughout the brain, but were most common in the occipital lobe. In the theta and alpha bands, both increases and decreases were observed, but with different anatomical distributions. Increases in theta and alpha power were most prevalent in frontal midline cortex. Decreases were most commonly observed in occipital cortex, colocalized with increases in the gamma range, but were also detected in lateral frontal and parietal regions. Spatial overlap with group functional magnetic resonance imaging results was minimal except in the precentral gyrus. These findings suggest that power in any given frequency band is not a unitary phenomenon; rather, reactivity in the same frequency band varies in different brain regions, and may relate to the engagement or inhibition of a given area in a cognitive task.


Biological Psychiatry | 2008

Abnormal corpus callosum integrity in bipolar disorder: a diffusion tensor imaging study

Fei Wang; Jessica H. Kalmar; Erin Edmiston; Lara G. Chepenik; Zubin Bhagwagar; Linda Spencer; Brian Pittman; Xenophon Papademetris; R. Todd Constable; Hilary P. Blumberg

OBJECTIVE Abnormalities in the anterior interhemispheric connections provided by the corpus callosum (CC) have long been implicated in bipolar disorder (BD). In this study, we used complementary diffusion tensor imaging methods to study the structural integrity of the CC and localization of potential abnormalities in BD. METHODS Subjects included 33 participants with BD and 40 healthy comparison participants. Fractional anisotropy (FA) measures were compared between groups with region of interest (ROI) methods to investigate the anterior, middle, and posterior CC and voxel-based methods to further localize abnormalities. RESULTS In ROI-based analyses, FA was significantly decreased in the anterior and middle CC in the BD group (p < .05). Voxel-based analyses similarly localized group differences to the genu, rostral body, and anterior midbody of CC (p < .05, corrected). CONCLUSION The findings demonstrate abnormalities in the structural integrity of the anterior CC in BD that might contribute to altered interhemispheric connectivity in this disorder.

Collaboration


Dive into the Xenophon Papademetris's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fei Wang

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge