Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xi Kathy Zhou is active.

Publication


Featured researches published by Xi Kathy Zhou.


Cancer Prevention Research | 2011

Inflammation and increased aromatase expression occur in the breast tissue of obese women with breast cancer

Patrick G. Morris; Clifford A. Hudis; Dilip Giri; Monica Morrow; Domenick J. Falcone; Xi Kathy Zhou; Baoheng Du; Edi Brogi; Carolyn B. Crawford; Levy Kopelovich; Kotha Subbaramaiah; Andrew J. Dannenberg

Obesity is a risk factor for the development of hormone receptor–positive breast cancer in postmenopausal women and has been associated with an increased risk of recurrence and reduced survival. In humans, obesity causes subclinical inflammation in visceral and subcutaneous adipose tissue, characterized by necrotic adipocytes surrounded by macrophages forming crown-like structures (CLS). Recently, we found increased numbers of CLS, activation of the NF-κB transcription factor, and elevated aromatase levels and activity in the mammary glands of obese mice. These preclinical findings raised the possibility that the obesity → inflammation axis is important for the development and progression of breast cancer. Here, our main objective was to determine if the findings in mouse models of obesity translated to women. Breast tissue was obtained from 30 women who underwent breast surgery. CLS of the breast (CLS-B) was found in nearly 50% (14 of 30) of patient samples. The severity of breast inflammation, defined as the CLS-B index, correlated with both body mass index (P < 0.001) and adipocyte size (P = 0.01). Increased NF-κB binding activity and elevated aromatase expression and activity were found in the inflamed breast tissue of overweight and obese women. Collectively, our results suggest that the obesity → inflammation → aromatase axis is present in the breast tissue of most overweight and obese women. The presence of CLS-B may be a biomarker of increased breast cancer risk or poor prognosis. Cancer Prev Res; 4(7); 1021–9. ©2011 AACR.


Cancer Prevention Research | 2011

Obesity Is Associated with Inflammation and Elevated Aromatase Expression in the Mouse Mammary Gland

Kotha Subbaramaiah; Louise R. Howe; Priya Bhardwaj; Baoheng Du; Claudia Gravaghi; Rhonda K. Yantiss; Xi Kathy Zhou; Victoria A. Blaho; Timothy Hla; Peiying Yang; Levy Kopelovich; Clifford A. Hudis; Andrew J. Dannenberg

Elevated circulating estrogen levels are associated with increased risk of breast cancer in obese postmenopausal women. Following menopause, the biosynthesis of estrogens through CYP19 (aromatase)-mediated metabolism of androgen precursors occurs primarily in adipose tissue, and the resulting estrogens are then secreted into the systemic circulation. The potential links between obesity, inflammation, and aromatase expression are unknown. In both dietary and genetic models of obesity, we observed necrotic adipocytes surrounded by macrophages forming crown-like structures (CLS) in the mammary glands and visceral fat. The presence of CLS was associated with activation of NF-κB and increased levels of proinflammatory mediators (TNF-α, IL-1β, Cox-2), which were paralleled by elevated levels of aromatase expression and activity in the mammary gland and visceral fat of obese mice. Analyses of the stromal-vascular and adipocyte fractions of the mammary gland suggested that macrophage-derived proinflammatory mediators induced aromatase and estrogen-dependent gene expression (PR, pS2) in adipocytes. Saturated fatty acids, which have been linked to obesity-related inflammation, stimulated NF-κB activity in macrophages leading to increased levels of TNF-α, IL-1β, and Cox-2, each of which contributed to the induction of aromatase in preadipocytes. The discovery of the obesity → inflammation → aromatase axis in the mammary gland and visceral fat and its association with CLS may provide insight into mechanisms underlying the increased risk of hormone receptor-positive breast cancer in obese postmenopausal women, the reduced efficacy of aromatase inhibitors in the treatment of breast cancer in these women, and their generally worse outcomes. The presence of CLS may be a biomarker of increased breast cancer risk or poor prognosis. Cancer Prev Res; 4(3); 329–46. ©2011 AACR.


Cancer Discovery | 2012

Increased Levels of COX-2 and Prostaglandin E2 Contribute to Elevated Aromatase Expression in Inflamed Breast Tissue of Obese Women

Kotha Subbaramaiah; Patrick G. Morris; Xi Kathy Zhou; Monica Morrow; Baoheng Du; Dilip Giri; Levy Kopelovich; Clifford A. Hudis; Andrew J. Dannenberg

UNLABELLED Obesity is a risk factor for hormone receptor-positive breast cancer in postmenopausal women. Estrogen synthesis is catalyzed by aromatase, which is encoded by CYP19. We previously showed that aromatase expression and activity are increased in the breast tissue of overweight and obese women in the presence of characteristic inflammatory foci [crown-like structures of the breast (CLS-B)]. In preclinical studies, proinflammatory prostaglandin E(2) (PGE(2)) is a determinant of aromatase expression. We provide evidence that cyclooxygenase (COX)-2-derived PGE(2) stimulates the cyclic AMP (cAMP) → PKA signal transduction pathway that activates CYP19 transcription, resulting in increased aromatase expression and elevated progesterone receptor levels in breast tissues from overweight and obese women. We further demonstrate that a measure of in-breast inflammation (CLS-B index) is a better correlate of these biologic end points than body mass index. The obesity → inflammation → aromatase axis is likely to contribute to the increased risk of hormone receptor-positive breast cancer and the worse prognosis of obese patients with breast cancer. SIGNIFICANCE We show that obesity-associated inflammatory foci in the human breast are associated with elevated COX-2 levels and activation of the PGE2 → cAMP → PKA signal transduction pathway resulting in increased aromatase expression. These findings help to explain the link among obesity, low-grade chronic inflammation, and breast cancer with important clinical implications.


Cancer Prevention Research | 2010

Effects of Cigarette Smoke on the Human Oral Mucosal Transcriptome

Jay O. Boyle; Zeynep H. Gümüş; Ashutosh Kacker; Vishal L. Choksi; Jennifer M. Bocker; Xi Kathy Zhou; Rhonda K. Yantiss; Duncan B. Hughes; Baoheng Du; Benjamin L. Judson; Kotha Subbaramaiah; Andrew J. Dannenberg

Use of tobacco is responsible for ∼30% of all cancer-related deaths in the United States, including cancers of the upper aerodigestive tract. In the current study, 40 current and 40 age- and gender-matched never smokers underwent buccal biopsies to evaluate the effects of smoking on the transcriptome. Microarray analyses were carried out using Affymetrix HGU133 Plus 2 arrays. Smoking altered the expression of numerous genes: 32 genes showed increased expression and 9 genes showed reduced expression in the oral mucosa of smokers versus never smokers. Increases were found in genes involved in xenobiotic metabolism, oxidant stress, eicosanoid synthesis, nicotine signaling, and cell adhesion. Increased numbers of Langerhans cells were found in the oral mucosa of smokers. Interestingly, smoking caused greater induction of aldo-keto reductases, enzymes linked to polycyclic aromatic hydrocarbon–induced genotoxicity, in the oral mucosa of women than men. Striking similarities in expression changes were found in oral compared with the bronchial mucosa. The observed changes in gene expression were compared with known chemical signatures using the Connectivity Map database and suggested that geldanamycin, a heat shock protein 90 inhibitor, might be an antimimetic of tobacco smoke. Consistent with this prediction, geldanamycin caused dose-dependent suppression of tobacco smoke extract–mediated induction of CYP1A1 and CYP1B1 in vitro. Collectively, these results provide new insights into the carcinogenic effects of tobacco smoke, support the potential use of oral epithelium as a surrogate tissue in future lung cancer chemoprevention trials, and illustrate the potential of computational biology to identify chemopreventive agents. Cancer Prev Res; 3(3); 266–78


Cancer Prevention Research | 2009

Levels of Prostaglandin E Metabolite and Leukotriene E4 Are Increased in the Urine of Smokers. Evidence that Celecoxib Shunts Arachidonic Acid into the 5-Lipoxygenase Pathway

Anna J. Duffield-Lillico; Jay O. Boyle; Xi Kathy Zhou; Aradhana Ghosh; Geera S. Butala; Kotha Subbaramaiah; Robert A. Newman; Jason D. Morrow; Ginger L. Milne; Andrew J. Dannenberg

Cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LO) play a role in inflammation and carcinogenesis. Biomarkers that reflect tobacco smoke–induced tissue injury are needed. In this study, levels of urinary prostaglandin E metabolite (PGE-M) and leukotriene E4 (LTE4), biomarkers of the COX and 5-LO pathways, were compared in never smokers, former smokers, and current smokers. The effects of celecoxib, a selective COX-2 inhibitor, on levels of PGE-M and LTE4 were determined. Baseline levels of PGE-M and LTE4 were positively associated with smoking status; levels of PGE-M and LTE4 were higher in current versus never smokers. Treatment with 200 mg celecoxib twice daily for 6 ± 1 days led to a reduction in urinary PGE-M levels in all groups but exhibited the greatest effect among subjects with high baseline PGE-M levels. Thus, high baseline PGE-M levels in smokers reflected increased COX-2 activity. In individuals with high baseline PGE-M levels, treatment with celecoxib led to a significant increase in levels of urinary LTE4, an effect that was not found in individuals with low baseline PGE-M levels. In conclusion, increased levels of urinary PGE-M and LTE4 were found in human smokers, a result that may reflect subclinical lung inflammation. In individuals with high baseline levels of PGE-M (elevated COX-2 activity), celecoxib administration shunted arachidonic acid into the proinflammatory 5-LO pathway. Because 5-LO activity and LTE4 have been suggested to play a role in cardiovascular disease, these results may help to explain the link between use of COX-2 inhibitors and cardiovascular complications.


Cancer Prevention Research | 2013

Increased Levels of Urinary PGE-M, a Biomarker of Inflammation, Occur in Association with Obesity, Aging, and Lung Metastases in Patients with Breast Cancer

Patrick G. Morris; Xi Kathy Zhou; Ginger L. Milne; Daniel A. Goldstein; Laura Hawks; Chau T. Dang; Shanu Modi; Monica Fornier; Clifford A. Hudis; Andrew J. Dannenberg

Elevated levels of COX-derived prostaglandin E2 (PGE2) occur in inflamed tissues. To evaluate the potential links between inflammation and breast cancer, levels of urinary prostaglandin E metabolite (PGE-M), a stable end metabolite of PGE2, were quantified. We enrolled 400 patients with breast cancer: controls with early breast cancer (n = 200), lung metastases (n = 100), and metastases to other sites (n = 100). Patients completed a questionnaire, provided urine, and had measurements of height and weight. Urinary PGE-M was quantified by mass spectrometry. Ever smokers with lung metastasis who had not been exposed to nonsteroidal anti-inflammatory drugs (NSAIDs) had the highest PGE-M levels. PGE-M levels were increased in association with elevated body mass index (BMI; P < 0.001), aging (P < 0.001), pack-year smoking history (P = 0.02), lung metastases (P = 0.02), and recent cytotoxic chemotherapy (P = 0.03). Conversely, use of NSAIDs, prototypic inhibitors of COX activity, was associated with reduced PGE-M levels (P < 0.001). On the basis of the current findings, PGE-M is likely to be a useful biomarker for the selection of high-risk subgroups to determine the use of interventions that aim to reduce inflammation and possibly the development and progression of breast cancer, especially in overweight and obese women. Cancer Prev Res; 6(5); 428–36. ©2013 AACR.


Clinical Cancer Research | 2016

Systemic Correlates of White Adipose Tissue Inflammation in Early-Stage Breast Cancer

Neil M. Iyengar; Xi Kathy Zhou; Ayca Gucalp; Patrick G. Morris; Louise R. Howe; Dilip Giri; Monica Morrow; Hanhan Wang; Michael Pollak; Lee W. Jones; Clifford A. Hudis; Andrew J. Dannenberg

Purpose: Obesity, insulin resistance, and elevated levels of circulating proinflammatory mediators are associated with poorer prognosis in early-stage breast cancer. To investigate whether white adipose tissue (WAT) inflammation represents a potential unifying mechanism, we examined the relationship between breast WAT inflammation and the metabolic syndrome and its prognostic importance. Experimental Design: WAT inflammation was defined by the presence of dead/dying adipocytes surrounded by macrophages forming crown-like structures (CLS) of the breast. Two independent groups were examined in cross-sectional (cohort 1) and retrospective (cohort 2) studies. Cohort 1 included 100 women undergoing mastectomy for breast cancer risk reduction (n = 10) or treatment (n = 90). Metabolic syndrome–associated circulating factors were compared by CLS-B status. The association between CLS of the breast and the metabolic syndrome was validated in cohort 2, which included 127 women who developed metastatic breast cancer. Distant recurrence-free survival (dRFS) was compared by CLS-B status. Results: In cohorts 1 and 2, breast WAT inflammation was detected in 52 of 100 (52%) and 52 of 127 (41%) patients, respectively. Patients with breast WAT inflammation had elevated insulin, glucose, leptin, triglycerides, C-reactive protein, and IL6 and lower high-density lipoprotein cholesterol and adiponectin (P < 0.05) in cohort 1. In cohort 2, breast WAT inflammation was associated with hyperlipidemia, hypertension, and diabetes (P < 0.05). Compared with patients without breast WAT inflammation, the adjusted HR for dRFS was 1.83 (95% CI, 1.07–3.13) for patients with inflammation. Conclusions: WAT inflammation, a clinically occult process, helps to explain the relationship between metabolic syndrome and worse breast cancer prognosis. Clin Cancer Res; 22(9); 2283–9. ©2015 AACR.


PLOS ONE | 2012

Activation Status of Wnt/ß-Catenin Signaling in Normal and Neoplastic Breast Tissues: Relationship to HER2/neu Expression in Human and Mouse

Sara Khalil; Grace A. Tan; Dilip Giri; Xi Kathy Zhou; Louise R. Howe

Wnt/ß-catenin signaling is strongly implicated in neoplasia, but the role of this pathway in human breast cancer has been controversial. Here, we examined Wnt/ß-catenin pathway activation as a function of breast cancer progression, and tested for a relationship with HER2/neu expression, using a human tissue microarray comprising benign breast tissues, ductal carcinoma in situ (DCIS), and invasive carcinomas. Cores were scored for membranous ß-catenin, a key functional component of adherens junctions, and for nucleocytoplasmic ß-catenin, a hallmark of Wnt/ß-catenin pathway activation. Only 82% of benign samples exhibited membrane-associated ß-catenin, indicating a finite frequency of false-negative staining. The frequency of membrane positivity was similar in DCIS samples, but was significantly reduced in carcinomas (45%, P<0.001), consistent with loss of adherens junctions during acquisition of invasiveness. Negative membrane status in cancers correlated with higher grade (P = 0.04) and estrogen receptor-negative status (P = 0.03), both indices of poor prognosis. Unexpectedly, a substantial frequency of nucleocytoplasmic ß-catenin was observed in benign breast tissues (36%), similar to that in carcinomas (35%). Positive-staining basal nuclei observed in benign breast may identify putative stem cells. An increased frequency of nucleocytoplasmic ß-catenin was observed in DCIS tumors (56%), suggesting that pathway activation may be an early event in human breast neoplasia. A correlation was observed between HER2/neu expression and nucleocytoplasmic ß-catenin in node-positive carcinomas (P = 0.02). Furthermore, cytoplasmic ß-catenin was detected in HER2/neu-induced mouse mammary tumors. The Axin2NLSlacZ mouse strain, a previously validated reporter of mammary Wnt/ß-catenin signaling, was utilized to define in vivo transcriptional consequences of HER2/neu-induced ß-catenin accumulation. Discrete hyperplastic foci observed in mammary glands from bigenic MMTV/neu, Axin2NLSlacZ mice, highlighted by robust ß-catenin/TCF signaling, likely represent the earliest stage of mammary intraepithelial neoplasia in MMTV/neu mice. Our study thus provides provocative evidence for Wnt/ß-catenin signaling as an early, HER2/neu-inducible event in breast neoplasia.


Cancer Prevention Research | 2015

Menopause Is a Determinant of Breast Adipose Inflammation

Neil M. Iyengar; Patrick G. Morris; Xi Kathy Zhou; Ayca Gucalp; Dilip Giri; Michael D. Harbus; Domenick J. Falcone; Margaret Krasne; Linda T. Vahdat; Kotha Subbaramaiah; Monica Morrow; Clifford A. Hudis; Andrew J. Dannenberg

Chronic inflammation is recognized as a risk factor for the development of several malignancies. Local white adipose tissue (WAT) inflammation, defined by the presence of dead or dying adipocytes encircled by macrophages that form crown-like structures (CLS), occurs in the breasts (CLS-B) of most overweight and obese women. Previously, we showed that the presence of CLS-B is associated with elevated tissue levels of proinflammatory mediators and aromatase, the rate-limiting enzyme for estrogen biosynthesis. The associated increased levels of aromatase in the breast provide a plausible mechanistic link between WAT inflammation and estrogen-dependent breast cancers. Thus, breast WAT inflammation could be relevant for explaining the high incidence of estrogen-dependent tumors with aging despite diminished circulating estrogen levels after menopause. To explore this possibility, we determined whether menopause in addition to body mass index (BMI) is associated with breast WAT inflammation among 237 prospectively enrolled women. The presence of CLS-B and its severity (CLS-B/cm2) as indicators of WAT inflammation correlated with menopausal status (P = 0.008 and P < 0.001) and BMI (P < 0.001 for both). In multivariable analyses adjusted for BMI, the postmenopausal state was independently associated with the presence (P = 0.03) and severity of breast WAT inflammation (P = 0.01). Mean adipocyte size increased in association with CLS-B (P < 0.001). Our findings demonstrate that breast WAT inflammation, which is associated with elevated aromatase levels, is increased in association with the postmenopausal state independent of BMI. Breast WAT inflammation, a process that can potentially be targeted, may help to explain the high incidence of estrogen-dependent tumors in postmenopausal women. Cancer Prev Res; 8(5); 349–58. ©2015 AACR.


Cancer Prevention Research | 2013

Caloric Restriction Reverses Obesity-Induced Mammary Gland Inflammation in Mice

Priya Bhardwaj; Baoheng Du; Xi Kathy Zhou; Erika Sue; Michael D. Harbus; Domenicak J. Falcone; Dilip Giri; Clifford A. Hudis; Levy Kopelovich; Kotha Subbaramaiah; Andrew J. Dannenberg

Obesity is a risk factor for the development of hormone receptor–positive breast cancer in postmenopausal women. Estrogen synthesis is catalyzed by aromatase. Recently, we identified an obesity→inflammation→aromatase axis in mouse models and women. In mouse models of obesity, inflammatory foci characterized by crown-like structures (CLS) consisting of dead adipocytes encircled by macrophages were found in the mammary gland. CLS of the breast were found in most overweight and obese women. CLS were associated with adipocyte hypertrophy, activation of NF-κB, elevated levels of proinflammatory mediators and aromatase, and increased expression of the progesterone receptor (PR). Collectively, these findings provide a plausible explanation for the link between obesity, chronic inflammation, and postmenopausal breast cancer. Here, we investigated whether caloric restriction (CR) reversed the inflammatory state and related molecular changes in the mammary gland of obese mice. Obese ovariectomized C57BL/6J mice were subjected to 30% CR for 7 or 14 weeks. Findings in CR mice were compared with the results in mice fed a high-fat diet ad libitum or with control mice fed a low-fat diet. CR was associated with more than a 75% decrease in mammary CLS/cm2. Reduced histologic inflammation following CR was associated with decreased adipocyte diameter and monocyte chemoattractant protein-1 (MCP-1) levels, reduced NF-κB binding activity, and normalization of levels of proinflammatory mediators, aromatase, and PR. In summary, obesity-related inflammation of the mammary gland and elevated aromatase and PR levels were reversed with CR. Our results provide a rationale for determining whether weight loss can reverse breast inflammation associated with obesity in women. Cancer Prev Res; 6(4); 282–9. ©2013 AACR.

Collaboration


Dive into the Xi Kathy Zhou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clifford A. Hudis

American Society of Clinical Oncology

View shared research outputs
Top Co-Authors

Avatar

Dilip Giri

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Neil M. Iyengar

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ayca Gucalp

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monica Morrow

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge