Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xia Ding is active.

Publication


Featured researches published by Xia Ding.


Oncogene | 2005

Stabilization of PML nuclear localization by conjugation and oligomerization of SUMO-3

Chuanhai Fu; Kashif Ahmed; Husheng Ding; Xia Ding; Jianping Lan; Zhihong Yang; Yong Miao; Yuanyuan Zhu; Yunyu Shi; Jingde Zhu; He Huang; Xuebiao Yao

The PML gene of acute promyelocytic leukemia (APL) encodes a cell-growth and tumor suppressor. PML localizes to discrete nuclear bodies (NBs) that are disrupted in APL cells, resulting from a reciprocal chromosome translocation t (15;17). Here we show that the nuclear localization of PML is also regulated by SUMO-3, one of the three recently identified SUMO isoforms in human cells. SUMO-3 bears similar subcellular distribution to those of SUMO-1 and -2 in the interphase nuclear body, which is colocalized with PML protein. However, both SUMO-2 and -3 are also localized to nucleoli, a region lacking SUMO-1. Immunoprecipitated PML protein bears SUMO-3 moiety in a covalently modified form, supporting the notion that PML is conjugated by SUMO-3. To determine the functional relevance of SUMO-3 conjugation on PML molecular dynamics, we suppressed SUMO-3 protein expression using a siRNA-mediated approach. Depletion of SUMO-3 markedly reduced the number of PML-containing NBa and their integrity, which is rescued by exogenous expression of SUMO-3 but not SUMO-1 or SUMO-2. The specific requirement of SUMO-3 for PML nuclear localization is validated by expression of SUMO-3 conjugation defective mutant. Moreover, we demonstrate that oligomerization of SUMO-3 is required for PML retention in the nucleus. Taken together, our studies provide first line of evidence showing that SUMO-3 is essential for PML localization and offer novel insight into the pathobiochemistry of APL.


Journal of Molecular Cell Biology | 2011

Aurora B kinase activation requires survivin priming phosphorylation by PLK1

Youjun Chu; Phil Yao; Wenwen Wang; Dongmei Wang; Zhikai Wang; Liangyu Zhang; Yuejia Huang; Yuwen Ke; Xia Ding; Xuebiao Yao

During cell division, chromosome segregation is orchestrated by the interaction of spindle microtubules with the centromere. Accurate attachment of spindle microtubules to kinetochore requires the chromosomal passenger of Aurora B kinase complex with borealin, INCENP and survivin (SUR). The current working model argues that SUR is responsible for docking Aurora B to the centromere whereas its precise role in Aurora B activation has been unclear. Here, we show that Aurora B kinase activation requires SUR priming phosphorylation at Ser20 which is catalyzed by polo-like kinase 1 (PLK1). Inhibition of PLK1 kinase activity or expression of non-phosphorylatable SUR mutant prevents Aurora B activation and correct spindle microtubule attachment. The PLK1-mediated regulation of Aurora B kinase activity was examined in real-time mitosis using fluorescence resonance energy transfer-based reporter and quantitative analysis of native Aurora B substrate phosphorylation. We reason that the PLK1-mediated priming phosphorylation is critical for orchestrating Aurora B activity in centromere which is essential for accurate chromosome segregation and faithful completion of cytokinesis.


Journal of Biological Chemistry | 2012

DNA Methylation-regulated miR-193a-3p Dictates Resistance of Hepatocellular Carcinoma to 5-Fluorouracil via Repression of SRSF2 Expression

Kelong Ma; Yinghua He; Hongyu Zhang; Qi Fei; Dandan Niu; Dongmei Wang; Xia Ding; Hua Xu; Xiaoping Chen; Jingde Zhu

Background: Chemoresistance prevents effective therapy of hepatocellular carcinoma (HCC). Results: Genomic and mechanistic studies suggested the role of miR-193a-3p via SRSF2 mediates up-regulation of the proapoptotic splicing form of caspase 2 in HCC 5-FU resistance. Conclusion: We identify a novel molecular mechanism underlying 5-FU resistance in HCC. Significance: These molecular events identified provide a set of prognostic markers for future rational 5-FU therapy in HCC. Chemoresistance prevents effective cancer therapy and is rarely predictable prior to treatment, particularly for hepatocellular carcinoma (HCC). Following the chemoresistance profiling of eight HCC cell lines to each of nine chemotherapeutics, two cell lines (QGY-7703 as a sensitive and SMMC-7721 as a resistant cell line to 5-fluorouracil (5-FU) treatment) were systematically studied for mechanistic insights underpinning HCC 5-FU chemoresistance. Genomic profiling at both DNA methylation and microRNA (miR) levels and subsequent mechanistic studies illustrate a new mechanism for how DNA methylation-regulated miR-193a-3p dictates the 5-FU resistance of HCC cells via repression of serine/arginine-rich splicing factor 2 (SRSF2) expression. In turn, SRSF2 preferentially up-regulates the proapoptotic splicing form of caspase 2 (CASP2L) and sensitizes HCC cells to 5-FU. Forced changes of miR-193a-3p level reverse all of the phenotypic features examined, including cell proliferation, cell cycle progression, and 5-FU sensitivity, in cell culture and in nude mice. Importantly, the siRNA-mediated repression of SRSF2 phenocopies all of the miR-193a-3p mimic-triggered changes in QGY-7703. This newly identified miR-193a-3p-SRSF2 axis highlights a new set of companion diagnostics required for optimal 5-FU therapy of HCC, which involve assaying both the DNA methylation state of the miR-193a gene and the expression of miR-193a-3p and SRSF2 and the relative level of the proapoptotic versus antiapoptotic splicing forms of caspase 2 in clinical samples.


Journal of Biological Chemistry | 2008

Septin 7 Interacts with Centromere-associated Protein E and Is Required for Its Kinetochore Localization

Mei Zhu; Fengsong Wang; Feng Yan; Phil Yao; Jian Du; Xinjiao Gao; Xiwei Wang; Quan Wu; Tarsha Ward; Jingjing Li; Steve Kioko; Renming Hu; Wei Xie; Xia Ding; Xuebiao Yao

Chromosome segregation in mitosis is orchestrated by dynamic interaction between spindle microtubules and the kinetochore. Septin (SEPT) belongs to a conserved family of polymerizing GTPases localized to the metaphase spindle during mitosis. Previous study showed that SEPT2 depletion results in chromosome mis-segregation correlated with a loss of centromere-associated protein E (CENP-E) from the kinetochores of congressing chromosomes (1). However, it has remained elusive as to whether CENP-E physically interacts with SEPT and how this interaction orchestrates chromosome segregation in mitosis. Here we show that SEPT7 is required for a stable kinetochore localization of CENP-E in HeLa and MDCK cells. SEPT7 stabilizes the kinetochore association of CENP-E by directly interacting with its C-terminal domain. The region of SEPT7 binding to CENP-E was mapped to its C-terminal domain by glutathione S-transferase pull-down and yeast two-hybrid assays. Immunofluorescence study shows that SEPT7 filaments distribute along the mitotic spindle and terminate at the kinetochore marked by CENP-E. Remarkably, suppression of synthesis of SEPT7 by small interfering RNA abrogated the localization of CENP-E to the kinetochore and caused aberrant chromosome segregation. These mitotic defects and kinetochore localization of CENP-E can be successfully rescued by introducing exogenous GFP-SEPT7 into the SEPT7-depleted cells. These SEPT7-suppressed cells display reduced tension at kinetochores of bi-orientated chromosomes and activated mitotic spindle checkpoint marked by Mad2 and BubR1 labelings on these misaligned chromosomes. These findings reveal a key role for the SEPT7-CENP-E interaction in the distribution of CENP-E to the kinetochore and achieving chromosome alignment. We propose that SEPT7 forms a link between kinetochore distribution of CENP-E and the mitotic spindle checkpoint.


Journal of Biological Chemistry | 2007

Human NUF2 interacts with centromere-associated protein E and is essential for a stable spindle microtubule-kinetochore attachment.

Dan Liu; Xia Ding; Jian Du; Xin Cai; Yuejia Huang; Tarsha Ward; Andrew R. E. Shaw; Yong Yang; Renming Hu; Changjiang Jin; Xuebiao Yao

Chromosome segregation in mitosis is orchestrated by dynamic interaction between spindle microtubules and the kinetochore, a multiprotein complex assembled onto centromeric DNA of the chromosome. Here, we show that Homo sapiens (Hs) NUF2 is required for stable kinetochore localization of centromere-associated protein E (CENP-E) in HeLa cells. HsNUF2 specifies the kinetochore association of CENP-E by interacting with its C-terminal domain. The region of HsNUF2 binding to CENP-E was mapped to its C-terminal domain by glutathione S-transferase pulldown and yeast two-hybrid assays. Suppression of synthesis of HsNUF2 by small interfering RNA abrogated the localization of CENP-E to the kinetochore, demonstrating the requirement of HsNUF2 for CENP-E kinetochore localization. In addition, depletion of HsNUF2 caused aberrant chromosome segregation. These HsNUF2-suppressed cells displayed reduced tension at kinetochores of bi-orientated chromosomes. Double knockdown of CENP-E and HsNUF2 further abolished the tension at the kinetochores. Our results indicate that HsNUF2 and CENP-E are required for organization of stable microtubule-kinetochore attachment that is essential for faithful chromosome segregation in mitosis.


Oncogene | 2008

The mitotic checkpoint kinase NEK2A regulates kinetochore microtubule attachment stability

Jian Du; X Cai; J Yao; Xia Ding; Quan Wu; S Pei; K Jiang; Y Zhang; Wenwen Wang; Yunyu Shi; Y Lai; J Shen; M Teng; He Huang; Q Fei; E S Reddy; Jingde Zhu; Changjiang Jin; Xuebiao Yao

Loss or gain of whole chromosome, the form of chromosome instability commonly associated with cancers is thought to arise from aberrant chromosome segregation during cell division. Chromosome segregation in mitosis is orchestrated by the interaction of kinetochores with spindle microtubules. Our studies show that NEK2A is a kinetochore-associated protein kinase essential for faithful chromosome segregation. However, it was unclear how NEK2A ensures accurate chromosome segregation in mitosis. Here we show that NEK2A-mediated Hec1 (highly expressed in cancer) phosphorylation is essential for faithful kinetochore microtubule attachments in mitosis. Using phospho-specific antibody, our studies show that NEK2A phosphorylates Hec1 at Ser165 during mitosis. Although such phosphorylation is not required for assembly of Hec1 to the kinetochore, expression of non-phosphorylatable mutant Hec1S165 perturbed chromosome congression and resulted in a dramatic increase in microtubule attachment errors, including syntelic and monotelic attachments. Our in vitro reconstitution experiment demonstrated that Hec1 binds to microtubule in low affinity and phosphorylation by NEK2A, which prevents aberrant kinetochore-microtubule connections in vivo, increases the affinity of the Ndc80 complex for microtubules in vitro. Thus, our studies illustrate a novel regulatory mechanism in which NEK2A kinase operates a faithful chromosome attachment to spindle microtubule, which prevents chromosome instability during cell division.


Journal of Biological Chemistry | 2011

PLK1 Phosphorylates Mitotic Centromere-associated Kinesin and Promotes Its Depolymerase Activity

Liangyu Zhang; Hengyi Shao; Yuejia Huang; Feng Yan; Youjun Chu; Hai Hou; Mei Zhu; Chuanhai Fu; Felix O. Aikhionbare; Guowei Fang; Xia Ding; Xuebiao Yao

During cell division, interaction between kinetochores and dynamic spindle microtubules governs chromosome movements. The microtubule depolymerase mitotic centromere-associated kinesin (MCAK) is a key regulator of mitotic spindle assembly and dynamics. However, the regulatory mechanisms underlying its depolymerase activity during the cell cycle remain elusive. Here, we showed that PLK1 is a novel regulator of MCAK in mammalian cells. MCAK interacts with PLK1 in vitro and in vivo. The neck and motor domain of MCAK associates with the kinase domain of PLK1. MCAK is a novel substrate of PLK1, and the phosphorylation stimulates its microtubule depolymerization activity of MCAK in vivo. Overexpression of a polo-like kinase 1 phosphomimetic mutant MCAK causes a dramatic increase in misaligned chromosomes and in multipolar spindles in mitotic cells, whereas overexpression of a nonphosphorylatable MCAK mutant results in aberrant anaphase with sister chromatid bridges, suggesting that precise regulation of the MCAK activity by PLK1 phosphorylation is critical for proper microtubule dynamics and essential for the faithful chromosome segregation. We reasoned that dynamic regulation of MCAK phosphorylation by PLK1 is required to orchestrate faithful cell division, whereas the high levels of PLK1 and MCAK activities seen in cancer cells may account for a mechanism underlying the pathogenesis of genomic instability.


Journal of Biological Chemistry | 2008

Helicobacter pylori VacA Disrupts Apical Membrane-Cytoskeletal Interactions in Gastric Parietal Cells

Fengsong Wang; Peng Xia; Fang Wu; Dongmei Wang; Wei Wang; Tarsha Ward; Ya Liu; Felix O. Aikhionbare; Zhen Guo; Michael Powell; Bingya Liu; Feng Bi; Andrew R. E. Shaw; Zhenggang Zhu; Adel B. Elmoselhi; Daiming Fan; Timothy L. Cover; Xia Ding; Xuebiao Yao

Helicobacter pylori persistently colonize the human stomach and have been linked to atrophic gastritis and gastric carcinoma. Although it is well known that H. pylori infection can result in hypochlorhydria, the molecular mechanisms underlying this phenomenon remain poorly understood. Here we show that VacA permeabilizes the apical membrane of gastric parietal cells and induces hypochlorhydria. The functional consequences of VacA infection on parietal cell physiology were studied using freshly isolated rabbit gastric glands and cultured parietal cells. Secretory activity of parietal cells was judged by an aminopyrine uptake assay and confocal microscopic examination. VacA permeabilization induces an influx of extracellular calcium, followed by activation of calpain and subsequent proteolysis of ezrin at Met469-Thr470, which results in the liberation of ezrin from the apical membrane of the parietal cells. VacA treatment inhibits acid secretion by preventing the recruitment of H,K-ATPase-containing tubulovesicles to the apical membrane of gastric parietal cells. Electron microscopic examination revealed that VacA treatment disrupts the radial arrangement of actin filaments in apical microvilli due to the loss of ezrin integrity in parietal cells. Significantly, expression of calpain-resistant ezrin restored the functional activity of parietal cells in the presence of VacA. Proteolysis of ezrin in VacA-infected parietal cells is a novel mechanism underlying H. pylori-induced inhibition of acid secretion. Our results indicate that VacA disrupts the apical membrane-cytoskeletal interactions in gastric parietal cells and thereby causes hypochlorhydria.


Journal of Biological Chemistry | 2008

Phosphorylation of HsMis13 by Aurora B kinase is essential for assembly of functional kinetochore.

Yong Yang; Fang Wu; Tarsha Ward; Feng Yan; Quan Wu; Zhaoyang Wang; Tanisha McGlothen; Wei Peng; Tianpa You; Mingkuan Sun; Taixing Cui; Renming Hu; Zhen Dou; Jingde Zhu; Wei Xie; Zihe Rao; Xia Ding; Xuebiao Yao

Chromosome movements in mitosis are orchestrated by dynamic interactions between spindle microtubules and the kinetochore, a multiprotein complex assembled onto centromeric DNA of the chromosome. Here we show that phosphorylation of human HsMis13 by Aurora B kinase is required for functional kinetochore assembly in HeLa cells. Aurora B interacts with HsMis13 in vitro and in vivo. HsMis13 is a cognate substrate of Aurora B, and the phosphorylation sites were mapped to Ser-100 and Ser-109. Suppression of Aurora B kinase by either small interfering RNA or chemical inhibitors abrogates the localization of HsMis13 but not HsMis12 to the kinetochore. In addition, non-phosphorylatable but not wild type and phospho-mimicking HsMis13 failed to localize to the kinetochore, demonstrating the requirement of phosphorylation by Aurora B for the assembly of HsMis13 to kinetochore. In fact, localization of HsMis13 to the kinetochore is spatiotemporally regulated by Aurora B kinase, which is essential for recruiting outer kinetochore components such as Ndc80 components and CENP-E for functional kinetochore assembly. Importantly, phospho-mimicking mutant HsMis13 restores the assembly of CENP-E to the kinetochore, and tension developed across the sister kinetochores in Aurora B-inhibited cells. Thus, we reason that HsMis13 phosphorylation by Aurora B is required for organizing a stable bi-oriented microtubule kinetochore attachment that is essential for faithful chromosome segregation in mitosis.


Oncogene | 2008

Functional characterization of TIP60 sumoylation in UV-irradiated DNA damage response.

Z Cheng; Yuwen Ke; Xia Ding; Fangjun Wang; H Wang; Wenwen Wang; K Ahmed; Zexian Liu; Y Xu; Felix O. Aikhionbare; H Yan; Jing Liu; Yu Xue; J Yu; Michael Powell; S Liang; Quan Wu; S E Reddy; Renming Hu; He Huang; Changjiang Jin; Xuebiao Yao

The histone acetyltransferase TIP60 regulates the DNA damage response following genotoxic stress by acetylating histone and remodeling chromatin. However, the molecular mechanisms underlying the TIP60-dependent response to UV-induced DNA damage remain poorly understood. To systematically analyse proteins that regulate TIP60 activity in response to UV irradiation, we performed a proteomic analysis of proteins selectively bound to TIP60 in response to UV irradiation using mass spectrometry and identified a novel regulatory mechanism by which TIP60 orchestrates transcriptional activation of p53-dependent checkpoint response in UV-irradiated cells. The initial step of this pathway involves UV-induced association of TIP60 with SUMO-conjugation enzymes and site-specific sumoylation of TIP60 at lysines 430 and 451 via Ubc9. This sumoylation initiates the relocation of TIP60 from nucleoplasm to the promyelocytic leukemia body, which is essential for the UV-irradiated DNA damage repair response via a p53-dependent pathway. Significantly, inhibition of TIP60 sumoylation by overexpression of non-sumoylatable mutant abrogates the p53-dependent DNA damage response, demonstrating the importance of TIP60 sumoylation in response to UV irradiation. Our biochemical characterization demonstrated that the sumoylation of TIP60 augments its acetyltransferase activity in vitro and in vivo. Thus, this study shed new light on the function and regulation of TIP60 activity in UV-irradiated DNA damage response.

Collaboration


Dive into the Xia Ding's collaboration.

Top Co-Authors

Avatar

Xuebiao Yao

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Dongmei Wang

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Tarsha Ward

Morehouse School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Zhen Dou

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Felix O. Aikhionbare

Morehouse School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Xing Liu

Morehouse School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Zhen Guo

Morehouse School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Fengsong Wang

Anhui Medical University

View shared research outputs
Top Co-Authors

Avatar

Wenwen Wang

Morehouse School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Changjiang Jin

University of Science and Technology of China

View shared research outputs
Researchain Logo
Decentralizing Knowledge