Xian Deng
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xian Deng.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Xian Deng; Lianfeng Gu; Chunyan Liu; Tiancong Lu; Falong Lu; Zhike Lu; Peng Cui; Yanxi Pei; Baichen Wang; Songnian Hu; Xiaofeng Cao
Protein arginine methylation, one of the most abundant and important posttranslational modifications, is involved in a multitude of biological processes in eukaryotes, such as transcriptional regulation and RNA processing. Symmetric arginine dimethylation is required for snRNP biogenesis and is assumed to be essential for pre-mRNA splicing; however, except for in vitro evidence, whether it affects splicing in vivo remains elusive. Mutation in an Arabidopsis symmetric arginine dimethyltransferase, AtPRMT5, causes pleiotropic developmental defects, including late flowering, but the underlying molecular mechanism is largely unknown. Here we show that AtPRMT5 methylates a wide spectrum of substrates, including some RNA binding or processing factors and U snRNP AtSmD1, D3, and AtLSm4 proteins, which are involved in RNA metabolism. RNA-seq analyses reveal that AtPRMT5 deficiency causes splicing defects in hundreds of genes involved in multiple biological processes. The splicing defects are identified in transcripts of several RNA processing factors involved in regulating flowering time. In particular, splicing defects at the flowering regulator FLOWERING LOCUS KH DOMAIN (FLK) in atprmt5 mutants reduce its functional transcript and protein levels, resulting in the up-regulation of a flowering repressor FLOWERING LOCUS C (FLC) and consequently late flowering. Taken together, our findings uncover an essential role for arginine methylation in proper pre-mRNA splicing that impacts diverse developmental processes.
Plant Physiology | 2007
WeiWei Deng; Chunyan Liu; Yanxi Pei; Xian Deng; Lifang Niu; Xiaofeng Cao
Histone acetylation is an important posttranslational modification correlated with gene activation. In Arabidopsis (Arabidopsis thaliana), the histone acetyltransferase AtHAC1 is homologous to animal p300/CREB (cAMP-responsive element-binding protein)-binding proteins, which are the main histone acetyltransferases participating in many physiological processes, including proliferation, differentiation, and apoptosis. The functions of p300/CREB-binding proteins in animals are well characterized, whereas little is known about the roles of AtHAC1 in developmental control in Arabidopsis. Lesions in AtHAC1 caused pleiotropic developmental defects, including delayed flowering, a shortened primary root, and partially reduced fertility. Analysis of the molecular basis of late flowering in hac1 mutants showed that the hac1 plants respond normally to day length, gibberellic acid treatment, and vernalization. Furthermore, the expression level of the flowering repressor FLOWERING LOCUS C (FLC) is increased in hac1 mutants, indicating that the late-flowering phenotype of hac1 mutants is mediated by FLC. Since histone acetylation is usually associated with the activation of gene expression, histone modifications of FLC chromatin are not affected by mutations in HAC1 and expression levels of all known autonomous pathway genes are unchanged in hac1 plants, we propose that HAC1 affects flowering time by epigenetic modification of factors upstream of FLC.
Cell Research | 2015
Yong Zhang; Lianfeng Gu; Yifeng Hou; Lulu Wang; Xian Deng; Runlai Hang; Dong Chen; Xiansheng Zhang; Yi Zhang; Chunyan Liu; Xiaofeng Cao
Alternative polyadenylation (APA) is a widespread mechanism for gene regulation and has been implicated in flowering, but the molecular basis governing the choice of a specific poly(A) site during the vegetative-to-reproductive growth transition remains unclear. Here we characterize HLP1, an hnRNP A/B protein as a novel regulator for pre-mRNA 3′-end processing in Arabidopsis. Genetic analysis reveals that HLP1 suppresses Flowering Locus C (FLC), a key repressor of flowering in Arabidopsis. Genome-wide mapping of HLP1-RNA interactions indicates that HLP1 binds preferentially to A-rich and U-rich elements around cleavage and polyadenylation sites, implicating its role in 3′-end formation. We show HLP1 is significantly enriched at transcripts involved in RNA metabolism and flowering. Comprehensive profiling of the poly(A) site usage reveals that HLP1 mutations cause thousands of poly(A) site shifts. A distal-to-proximal poly(A) site shift in the flowering regulator FCA, a direct target of HLP1, leads to upregulation of FLC and delayed flowering. Our results elucidate that HLP1 is a novel factor involved in 3′-end processing and controls reproductive timing via targeting APA.
Molecular Cell | 2017
Jiliang Hu; Huanjie Yang; Jinye Mu; Tiancong Lu; Juli Peng; Xian Deng; Zhaosheng Kong; Shilai Bao; Xiaofeng Cao; Jianru Zuo
Methylation and nitric oxide (NO)-based S-nitrosylation are highly conserved protein posttranslational modifications that regulate diverse biological processes. In higher eukaryotes, PRMT5 catalyzes Arg symmetric dimethylation, including key components of the spliceosome. The Arabidopsis prmt5 mutant shows severe developmental defects and impaired stress responses. However, little is known about the mechanisms regulating the PRMT5 activity. Here, we report that NO positively regulates the PRMT5 activity through S-nitrosylation at Cys-125 during stress responses. In prmt5-1 plants, a PRMT5C125S transgene, carrying a non-nitrosylatable mutation at Cys-125, fully rescues the developmental defects, but not the stress hypersensitive phenotype and the responsiveness to NO during stress responses. Moreover, the salt-induced Arg symmetric dimethylation is abolished in PRMT5C125S/prmt5-1 plants, correlated to aberrant splicing of pre-mRNA derived from a stress-related gene. These findings define a mechanism by which plants transduce stress-triggered NO signal to protein methylation machinery through S-nitrosylation of PRMT5 in response to environmental alterations.
The Plant Cell | 2015
Zhe Wu; Danling Zhu; Xiaoya Lin; Jin Miao; Lianfeng Gu; Xian Deng; Qian Yang; Kangtai Sun; Danmeng Zhu; Xiaofeng Cao; Tomohiko Tsuge; Caroline Dean; Takashi Aoyama; Hongya Gu; Li-Jia Qu
Plant-specific RNA binding proteins RZ-1B and RZ-1C interact with a number of highly conserved serine/arginine-rich proteins to regulate RNA splicing and gene expression in Arabidopsis. Nuclear-localized RNA binding proteins are involved in various aspects of RNA metabolism, which in turn modulates gene expression. However, the functions of nuclear-localized RNA binding proteins in plants are poorly understood. Here, we report the functions of two proteins containing RNA recognition motifs, RZ-1B and RZ-1C, in Arabidopsis thaliana. RZ-1B and RZ-1C were localized to nuclear speckles and interacted with a spectrum of serine/arginine-rich (SR) proteins through their C termini. RZ-1C preferentially bound to purine-rich RNA sequences in vitro through its N-terminal RNA recognition motif. Disrupting the RNA binding activity of RZ-1C with SR proteins through overexpression of the C terminus of RZ-1C conferred defective phenotypes similar to those observed in rz-1b rz-1c double mutants, including delayed seed germination, reduced stature, and serrated leaves. Loss of function of RZ-1B and RZ-1C was accompanied by defective splicing of many genes and global perturbation of gene expression. In addition, we found that RZ-1C directly targeted FLOWERING LOCUS C (FLC), promoting efficient splicing of FLC introns and likely also repressing FLC transcription. Our findings highlight the critical role of RZ-1B/1C in regulating RNA splicing, gene expression, and many key aspects of plant development via interaction with proteins including SR proteins.
Current Opinion in Plant Biology | 2017
Xian Deng; Xiaofeng Cao
Plants possess amazing plasticity of growth and development, allowing them to adjust continuously and rapidly to changes in the environment. Over the past two decades, numerous molecular studies have illuminated the role of transcriptional regulation in plant development and environmental responses. However, emerging studies in Arabidopsis have uncovered an unexpectedly widespread role for post-transcriptional regulation in development and responses to environmental changes. In this review, we summarize recent discoveries detailing the contribution of two post-transcriptional mechanisms, pre-mRNA splicing and polyadenylation, to the regulation of plant development, with an emphasis on the control of flowering time. We also discuss future directions in the field and new technological approaches.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Xian Deng; Tiancong Lu; Lulu Wang; Lianfeng Gu; Jing Sun; Xiangfeng Kong; Chunyan Liu; Xiaofeng Cao
Significance Protein arginine methyltransferase 5 (PRMT5) is involved in various developmental processes by globally regulating pre-mRNA splicing of diverse genes, but the underlying mechanism remains elusive. Here we demonstrate for the first time, to our knowledge, that Arabidopsis PRMT5 promotes the recruitment of the NineTeen Complex and splicing factors in the catalytic reactions to the spliceosome, thus promoting global pre-mRNA splicing. Our findings uncover a key molecular mechanism for PRMT5 in the regulation of pre-mRNA splicing, which fills a major gap in understanding of the role for PRMT5 in spliceosome assembly. Due to the conservation of PRMT5 in plants and animals, our finding is likely a fundamental molecular mechanism applicable to all eukaryotes, thereby shedding light on PRMT5 functions and spliceosome activation in animals. Protein arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), is involved in a multitude of biological processes in eukaryotes. Symmetric arginine dimethylation mediated by PRMT5 modulates constitutive and alternative pre-mRNA splicing of diverse genes to regulate normal growth and development in multiple species; however, the underlying molecular mechanism remains largely unknown. A genetic screen for suppressors of an Arabidopsis symmetric arginine dimethyltransferase mutant, atprmt5, identified two gain-of-function alleles of pre-mRNA processing factor 8 gene (prp8-8 and prp8-9), the highly conserved core component of the U5 small nuclear ribonucleoprotein (snRNP) and the spliceosome. These two atprmt5 prp8 double mutants showed suppression of the developmental and splicing alterations of atprmt5 mutants. In atprmt5 mutants, the NineTeen complex failed to be assembled into the U5 snRNP to form an activated spliceosome; this phenotype was restored in the atprmt5 prp8-8 double mutants. We also found that loss of symmetric arginine dimethylation of Sm proteins prevents recruitment of the NineTeen complex and initiation of spliceosome activation. Together, our findings demonstrate that symmetric arginine dimethylation has important functions in spliceosome assembly and activation, and uncover a key molecular mechanism for arginine methylation in pre-mRNA splicing that impacts diverse developmental processes.
The Plant Cell | 2017
Zhenlin Yang; Qi Qiu; Wei Chen; Bei Jia; Xiaomei Chen; Hongmiao Hu; Kaixuan He; Xian Deng; Sisi Li; W. Andy Tao; Xiaofeng Cao; Jiamu Du
The structure of the Arabidopsis JMJ14 catalytic domain in complex with H3K4me3 peptide reveals a conserved substrate binding mode shared by both plant and animal KDM5 subfamily histone demethylase. In chromatin, histone methylation affects the epigenetic regulation of multiple processes in animals and plants and is modulated by the activities of histone methyltransferases and histone demethylases. The jumonji domain-containing histone demethylases have diverse functions and can be classified into several subfamilies. In humans, the jumonji domain-containing Lysine (K)-Specific Demethylase 5/Jumonji and ARID Domain Protein (KDM5/JARID) subfamily demethylases are specific for histone 3 lysine 4 trimethylation (H3K4me3) and are important drug targets for cancer treatment. In Arabidopsis thaliana, the KDM5/JARID subfamily H3K4me3 demethylase JUMONJI14 (JMJ14) plays important roles in flowering, gene silencing, and DNA methylation. Here, we report the crystal structures of the JMJ14 catalytic domain in both substrate-free and bound forms. The structures reveal that the jumonji and C5HC2 domains contribute to the specific recognition of the H3R2 and H3Q5 to facilitate H3K4me3 substrate specificity. The critical acidic residues are conserved in plants and animals with the corresponding mutations impairing the enzyme activity of both JMJ14 and human KDM5B, indicating a common substrate recognition mechanism for KDM5 subfamily demethylases shared by plants and animals and further informing efforts to design targeted inhibitors of human KDM5.
Plant Physiology | 2018
Runlai Hang; Zhen Wang; Xian Deng; Chun yan Liu; Bin Yan; Chao Yang; Xianwei Song; Beixin Mo; Xiaofeng Cao
Pre-rRNA processing in rice involves two coexisting pathways and responds to chilling stress. Ribosome biogenesis is crucial for plant growth and environmental acclimation. Processing of ribosomal RNAs (rRNAs) is an essential step in ribosome biogenesis and begins with transcription of the rDNA. The resulting precursor-rRNA (pre-rRNA) transcript undergoes systematic processing, where multiple endonucleolytic and exonucleolytic cleavages remove the external and internal transcribed spacers (ETS and ITS). The processing sites and pathways for pre-rRNA processing have been deciphered in Saccharomyces cerevisiae and, to some extent, in Xenopus laevis, mammalian cells, and Arabidopsis (Arabidopsis thaliana). However, the processing sites and pathways remain largely unknown in crops, particularly in monocots such as rice (Oryza sativa), one of the most important food resources in the world. Here, we identified the rRNA precursors produced during rRNA biogenesis and the critical endonucleolytic cleavage sites in the transcribed spacer regions of pre-rRNAs in rice. We further found that two pre-rRNA processing pathways, distinguished by the order of 5′ ETS removal and ITS1 cleavage, coexist in vivo. Moreover, exposing rice to chilling stress resulted in the inhibition of rRNA biogenesis mainly at the pre-rRNA processing level, suggesting that these energy-intensive processes may be reduced to increase acclimation and survival at lower temperatures. Overall, our study identified the pre-rRNA processing pathway in rice and showed that ribosome biogenesis is quickly inhibited by low temperatures, which may shed light on the link between ribosome biogenesis and environmental acclimation in crop plants.
Current Opinion in Plant Biology | 2018
Xian Deng; Qi Qiu; Kaixuan He; Xiaofeng Cao
Epigenetic regulation plays fundamental roles in modulating chromatin-based processes and shaping the epigenome in multicellular eukaryotes, including plants. How epigenetic factors recognize their target loci hiding in the vast genomic DNA sequence remains a long-standing mystery. During the past several years, a growing body of work has revealed the complex, dynamic, and diverse chromatin-targeting mechanisms of these epigenetic factors. In this review, we focus on recent advances in understanding the recruitment of epigenetic factors to specific genomic regions, based on data from Arabidopsis thaliana.