Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xianbo Xiang is active.

Publication


Featured researches published by Xianbo Xiang.


Robotics and Autonomous Systems | 2015

Smooth transition of AUV motion control: From fully-actuated to under-actuated configuration

Xianbo Xiang; Lionel Lapierre; Bruno Jouvencel

This paper addresses the problem of steering autonomous underwater vehicle (AUV) along a desired horizontal path throughout the full-range low-speed and high-speed profiles, experiencing both fully-actuated and under-actuated configurations. First, a nonlinear controller adopting Lyapunov’s direct method and backstepping technique is proposed for under-actuated AUV, based on the Line-of-Sight guidance built in a moving Frenet–Serret frame. And then, the controller is adapted to fully-actuated AUV except that the control computation for the evolution of the side-slip angle is different from the case of under-actuated one. Hence, both the fully-actuated and under-actuated configurations are under the same control framework, which enables a smooth continuous transition between two configurations in a synthesized controller. Finally, simulation results illustrate the performance of the proposed control design, where the varied control efforts in the sway direction clearly show the transitions from fully-actuated to under-actuated configuration.


Computers & Operations Research | 2017

Robust fuzzy 3D path following for autonomous underwater vehicle subject to uncertainties

Xianbo Xiang; Caoyang Yu; Qin Zhang

This paper addresses a three-dimensional (3D) path following control problem for underactuated autonomous underwater vehicle (AUV) subject to both internal and external uncertainties. A two-layered framework synthesizing the 3D guidance law and heuristic fuzzy control is proposed to achieve robust adaptive following along a predefined path. In the first layer, a 3D guidance controller for underactuated AUV is presented to guarantee the stability of path following in the kinematics stage. In the second layer, a heuristic adaptive fuzzy algorithm based on the guidance command and feedback linearization Proportional-Integral-Derivative (PID) controller is developed in the dynamics stage to account for the nonlinear dynamics and system uncertainties, including inaccuracy modelling parameters and time-varying environmental disturbances. Furthermore, the sensitivity analysis of the heuristic fuzzy controller is presented. Against most existing methods for 3D path following, the proposed robust fuzzy control scheme reduces the design and implementation costs of complicated dynamics controller, and relaxes the knowledge of the accuracy dynamics modelling and environmental disturbances. Finally, numerical simulation results validate the effectiveness of the proposed control framework and illustrate the outperformance of the proposed controller as well. HighlightsA two-layered framework synthesizing the guidance and control is proposed for 3D AUV path following.Robust and heuristic fuzzy path following algorithm is adopted to account for the system uncertainties.Proposed control scheme reduces the design and implementation cost with regard to most existing methods.Case study and quantitative comparison explicitly show the effectiveness of the proposed framework.


International Journal of Advanced Robotic Systems | 2010

Coordinated Formation Control of Multiple Autonomous Underwater Vehicles for Pipeline Inspection

Xianbo Xiang; Bruno Jouvencel; Olivier Parodi

This paper addresses the control problem of inspecting underwater pipeline on the seabed, with coordinated multiple autonomous underwater vehicles in a formation. Based on the leader-follower strategy, the dedicated nonlinear path following controller is rigorously built on Lyapunov-based design, driving a fleet of vehicles onto assigned parallel paths elevated and offset from the underwater pipeline, while keeping a triangle formation to capture complete 3D images for inspection. Due to the spatial-temporal decoupling characteristics of individual path following controller, the velocities of the followers can be adapted in the coordinated control level, only relying on the information of generalized along-path length from the leader, in order to build the desired formation. Thus, the communication variable broadcast from the leader is kept to a minimum, which is feasible under the severely constraints of acoustic communication bandwidth. Simulation results illustrate the efficiency of coordinated formation controller proposed for underwater pipeline inspection.


IEEE Transactions on Industrial Informatics | 2013

Distributed Control of Coordinated Path Tracking for Networked Nonholonomic Mobile Vehicles

Qin Zhang; Lionel Lapierre; Xianbo Xiang

This paper addresses the problem of coordinated path tracking for networked nonholonomic mobile vehicles, while building and keeping a desired formation. The control laws proposed are categorized into two envelopes by integrating individual path tracking and global virtual structure approaches. One is steering individual vehicles to track virtual vehicles moving along predefined paths, generated by a formation reference vehicle (FRV) of a time-varying desired virtual structure. The other is ensuring paths to be well tracked in order to build a geometric formation, through the distributed feedback law for path parameters related to the virtual vehicles, such that the physical vehicles are on the desired placements of the formation structure. Within this framework, geometric path tracking is achieved via nonlinear control theory, where an approaching angle is injected as a heading guidance design. The distributed feedback law is analyzed under communication constraints using algebraic graph theory. It is formally shown that the path tracking error of each vehicle is reduced to zero, and vehicles in the networked team globally asymptotically converge to a desired formation with equal path parameters. Simulation results illustrate the effectiveness of the proposed control design.


Journal of Systems Science & Complexity | 2012

Synchronized path following control of multiple homogenous underactuated AUVs

Xianbo Xiang; Chao Liu; Lionel Lapierre; Bruno Jouvencel

This paper addresses the problem of synchronized path following of multiple homogenous underactuated autonomous underwater vehicles (AUVs). The dedicated control laws are categorized into two envelopes: One is steering individual underwater vehicle to track along predefined path, and the other is ensuring tracked paths of multiple vehicles to be synchronized, by means of decentralized speed adaption under the constraints of multi-vehicle communication topology. With these two tasks formulation, geometric path following is built on Lyapunov theory and backstepping techniques, while injecting helmsman behavior into classic individual path following control. Synchronization of path parameters are reached by using a mixture of tools from linear algebra, graph theory and nonlinear control theory. A simple but effective control design on direct inter-vehicle speed adaption with minimized communication variables, enables the multi-AUV systems to be synchronized and stabilized into an invariant manifold, and all speeds converge to desired assignments as a byproduct. Simulation results illustrate the performance of the synchronized path following control laws proposed.


Sensors | 2016

Subsea Cable Tracking by Autonomous Underwater Vehicle with Magnetic Sensing Guidance

Xianbo Xiang; Caoyang Yu; Zemin Niu; Qin Zhang

The changes of the seabed environment caused by a natural disaster or human activities dramatically affect the life span of the subsea buried cable. It is essential to track the cable route in order to inspect the condition of the buried cable and protect its surviving seabed environment. The magnetic sensor is instrumental in guiding the remotely-operated vehicle (ROV) to track and inspect the buried cable underseas. In this paper, a novel framework integrating the underwater cable localization method with the magnetic guidance and control algorithm is proposed, in order to enable the automatic cable tracking by a three-degrees-of-freedom (3-DOF) under-actuated autonomous underwater vehicle (AUV) without human beings in the loop. The work relies on the passive magnetic sensing method to localize the subsea cable by using two tri-axial magnetometers, and a new analytic formulation is presented to compute the heading deviation, horizontal offset and buried depth of the cable. With the magnetic localization, the cable tracking and inspection mission is elaborately constructed as a straight-line path following control problem in the horizontal plane. A dedicated magnetic line-of-sight (LOS) guidance is built based on the relative geometric relationship between the vehicle and the cable, and the feedback linearizing technique is adopted to design a simplified cable tracking controller considering the side-slip effects, such that the under-actuated vehicle is able to move towards the subsea cable and then inspect its buried environment, which further guides the environmental protection of the cable by setting prohibited fishing/anchoring zones and increasing the buried depth. Finally, numerical simulation results show the effectiveness of the proposed magnetic guidance and control algorithm on the envisioned subsea cable tracking and the potential protection of the seabed environment along the cable route.


Marine Technology Society Journal | 2016

Path-Following Control of an AUV: Fully Actuated Versus Under-actuated Configuration

Xianbo Xiang; Caoyang Yu; Qin Zhang; Guohua Xu

The problem of motion control of underwater vehicles in both the fully actuated and under-actuated configurations is often confronted by the marine technology community. This paper presents a nonlinear control method for autonomous underwater vehicles (AUVs) traveling along a planned planar path in both actuation configurations. The common objectives of path-following control for both fully actuated and under-actuated vehicles are described, and the differences in the necessary path-following control designs are analyzed, showing that the side-slip angle of the vehicle plays an important role in the evolution of the dynamics of AUVs with different actuation configurations. Based on the presented analysis, nonlinear controllers for the two types of AUV configurations are proposed, and the inherent characteristics of under-actuation and full actuation are revealed by a dedicated analysis of numerical simulation paradigms, the results of which will be instrumental in guiding marine technology engineers in the practical design and control of AUVs.


intelligent robots and systems | 2011

Path tracking: Combined path following and trajectory tracking for autonomous underwater vehicles

Xianbo Xiang; Lionel Lapierre; Chao Liu; Bruno Jouvencel

This paper proposes a novel control strategy for autonomous underwater vehicles (AUVs), named as path tracking, which combines the conventional path following and trajectory tracking control in order to achieve smooth spatial convergence and tight temporal performance as well. This idea is inspired by the previous work of Hindman [1] and Encarnacao [2], however, the path tracking design herein goes from path following to trajectory tracking, which indeed is an inverse way from the previous solutions so that the complex projection algorithm resulting in a local stability is avoided. A kinematics controller is first derived by using Lyapunov direct method where a virtual path parameter is introduced to bring an extra control degree of freedom, and then it is extended to the dynamics of AUVs based on backstepping technique. The resulting nonlinear control design is formally shown and it yields global asymptotic convergence of the AUV to the path. Finally, simulation results illustrate the efficiency of the path tracking control design for AUVs.


International Journal of Fuzzy Systems | 2018

Survey on Fuzzy-Logic-Based Guidance and Control of Marine Surface Vehicles and Underwater Vehicles

Xianbo Xiang; Caoyang Yu; Lionel Lapierre; Jialei Zhang; Qin Zhang

Fuzzy logic control, due to its simple control structure, easy and cost-effective design, has been successfully employed to the application of guidance and control in robotic fields. This paper aims to review fuzzy-logic-based guidance and control in an important branch of robots—marine robotic vehicles. First, guidance and motion forms including the maneuvering, path following, trajectory tracking, and position stabilization are described. Subsequently, the application of three major classes of fuzzy logic control, including the conventional fuzzy control (Mamdani fuzzy control and Takagi–Sugeno–Kang fuzzy control), adaptive fuzzy control (self-tuning fuzzy control and direct/indirect adaptive fuzzy control), and hybrid fuzzy control (fuzzy PID control, fuzzy sliding mode control, and neuro-fuzzy control) are presented. In particular, we summarize the design and analysis process of direct/indirect adaptive fuzzy control and fuzzy PID control in marine robotic fields. In addition, two comparative results between hybrid fuzzy control and the corresponding single control are provided to illustrate the superiority of hybrid fuzzy control. Finally, trends of the fuzzy future in marine robotic vehicles are concluded based on its state of the art.


Isa Transactions | 2017

On decentralized adaptive full-order sliding mode control of multiple UAVs

Xianbo Xiang; Chao Liu; Housheng Su; Qin Zhang

In this study, a novel decentralized adaptive full-order sliding mode control framework is proposed for the robust synchronized formation motion of multiple unmanned aerial vehicles (UAVs) subject to system uncertainty. First, a full-order sliding mode surface in a decentralized manner is designed to incorporate both the individual position tracking error and the synchronized formation error while the UAV group is engaged in building a certain desired geometric pattern in three dimensional space. Second, a decentralized virtual plant controller is constructed which allows the embedded low-pass filter to attain the chattering free property of the sliding mode controller. In addition, robust adaptive technique is integrated in the decentralized chattering free sliding control design in order to handle unknown bounded uncertainties, without requirements for assuming a priori knowledge of bounds on the system uncertainties as stated in conventional chattering free control methods. Subsequently, system robustness as well as stability of the decentralized full-order sliding mode control of multiple UAVs is synthesized. Numerical simulation results illustrate the effectiveness of the proposed control framework to achieve robust 3D formation flight of the multi-UAV system.

Collaboration


Dive into the Xianbo Xiang's collaboration.

Top Co-Authors

Avatar

Caoyang Yu

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Guohua Xu

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Qin Zhang

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Lionel Lapierre

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Bruno Jouvencel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Hui Liu

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Chao Liu

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jialei Zhang

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ying Guo

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Olivier Parodi

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge