Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xianchun Li is active.

Publication


Featured researches published by Xianchun Li.


Nature Genetics | 2013

A heterozygous moth genome provides insights into herbivory and detoxification

Minsheng You; Zhen Yue; Weiyi He; Xinhua Yang; Guang Yang; Miao Xie; Dongliang Zhan; Simon W. Baxter; Liette Vasseur; Geoff M. Gurr; Carl J. Douglas; Jianlin Bai; Ping Wang; Kai Cui; Shiguo Huang; Xianchun Li; Qing Zhou; Zhangyan Wu; Qilin Chen; Chunhui Liu; Bo Wang; Xiaojing Li; Xiufeng Xu; Changxin Lu; Min Hu; John W. Davey; Sandy M. Smith; Ming-Shun Chen; Xiaofeng Xia; Weiqi Tang

How an insect evolves to become a successful herbivore is of profound biological and practical importance. Herbivores are often adapted to feed on a specific group of evolutionarily and biochemically related host plants, but the genetic and molecular bases for adaptation to plant defense compounds remain poorly understood. We report the first whole-genome sequence of a basal lepidopteran species, Plutella xylostella, which contains 18,071 protein-coding and 1,412 unique genes with an expansion of gene families associated with perception and the detoxification of plant defense compounds. A recent expansion of retrotransposons near detoxification-related genes and a wider system used in the metabolism of plant defense compounds are shown to also be involved in the development of insecticide resistance. This work shows the genetic and molecular bases for the evolutionary success of this worldwide herbivore and offers wider insights into insect adaptation to plant feeding, as well as opening avenues for more sustainable pest management.


Nature | 2002

Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes

Xianchun Li; Mary A. Schuler; May R. Berenbaum

Jasmonate and salicylate are plant-produced signals that activate plant defence genes after herbivory or pathogen attack. Amplification of these signals, evoked by either enemy attack or experimental manipulation, leads to an increase in the synthesis of toxic compounds (allelochemicals) and defence proteins in the plants. Although the jasmonate and salicylate signal cascades activate different sets of plant defence genes, or even act antagonistically, there is substantial communication between the pathways. Jasmonate and salicylate also contribute to protecting plants against herbivores by causing plants that experience insect damage to increase their production of volatile molecules that attract natural enemies of herbivorous insects. In response to plant defences, herbivores increase their production of enzymes that detoxify allelochemicals, including cytochrome P450s (refs 15, 16). But herbivores are potentially vulnerable to toxic allelochemicals in the duration between ingesting toxins and induction of detoxification systems. Here we show that the corn earworm Helicoverpa zea uses jasmonate and salicylate to activate four of its cytochrome P450 genes that are associated with detoxification either before or concomitantly with the biosynthesis of allelochemicals. This ability to ‘eavesdrop’ on plant defence signals protects H. zea against toxins produced by host plants.


Insect Biochemistry and Molecular Biology | 2000

Molecular cloning and expression of CYP6B8: A xanthotoxin-inducible cytochrome P450 cDNA from Helicoverpa zea

Xianchun Li; May R. Berenbaum; Mary A. Schuler

Xanthotoxin, a plant allelochemical, induces alpha-cypermethrin insecticide tolerance in Helicoverpa zea (corn earworm); inhibition of tolerance by piperonyl butoxide implicates cytochrome P450 monooxygenases (P450s) in the detoxification of this insecticide. To characterize the xanthotoxin-inducible P450 that might mediate alpha-cypermethrin tolerance in this species, a cDNA library prepared from xanthotoxin-induced H. zea fifth instar larvae was screened with cDNAs encoding furanocoumarin-metabolizing P450s from Papilio polyxenes (CYP6B1v2) and P. glaucus (CYP6B4v2) as well as a sequence-related P450 from Helicoverpa armigera (CYP6B2). One full-length cDNA isolated in this screening shares 51-99% amino acid identity with the CYP6B subfamily of P450s isolated from Papilio and Helicoverpa species and, thus, has been designated CYP6B8. All of these CYP6B subfamily members share a number of highly conserved domains, including substrate recognition site 1 (SRS 1) that is critical for xanthotoxin metabolism by CYP6B1v2 from Papilio polyxenes and coumarin metabolism by CYP2a5 from Mus musculus. Northern and RT-PCR analyses indicate that CYP6B8 expression is strongly induced by xanthotoxin and phenobarbital and negligibly induced by alpha-cypermethrin.


Insect Molecular Biology | 2002

Plant allelochemicals differentially regulate Helicoverpa zea cytochrome P450 genes

Xianchun Li; May R. Berenbaum; Mary A. Schuler

Four cytochrome P450 genes, CYP6B8, CYP6B9, CYP6B27 and CYP6B28, exist in the Helicoverpa zea genome as two pairs of paralogs that evolved from gene duplication and 5′‐polar gene conversion events. RT‐PCR gel blot analyses have shown that all of these genes are expressed constitutively in midguts of all larval instars, suggesting that they have primary roles in the detoxification of plant allelochemicals. Among these, CYP6B9 is expressed only in midgut tissue whereas its paralog, CYP6B27, is expressed primarily in midgut and secondarily in fat body and ovary. CYP6B28 is expressed in midgut, fat body and, to lesser extents in ovary and integument whereas its paralog, CYP6B8, is expressed in midgut and to some extent in fat body. Comparison of the expression levels induced by eight plant allelochemicals, one drug (phenobarbital), and an insecticide (α‐cypermethrin) indicates that, for the most part, the four P450s respond individually to these inducers, with all four induced strongly by chlorogenic acid, a shikimate pathway intermediate and a lignin biosynthesis intermediate present in a wide variety of plants, and indole‐3‐carbinol, a glucobrassicin breakdown product present in the Brassicaceae. The multiple levels at which these P450 genes are apparently diverging (e.g. transcriptional responses, protein sequences) support the suggestion that gene conversion events facilitate gene evolution by allowing duplicated copies greater time to acquire selectable differences in both coding and promoter sequences.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Asymmetrical cross-resistance between Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in pink bollworm

Bruce E. Tabashnik; Gopalan C. Unnithan; Luke Masson; David W. Crowder; Xianchun Li; Yves Carrière

Transgenic crops producing Bacillus thuringiensis (Bt) toxins kill some key insect pests and can reduce reliance on insecticide sprays. Sustainable use of such crops requires methods for delaying evolution of resistance by pests. To thwart pest resistance, some transgenic crops produce 2 different Bt toxins targeting the same pest. This “pyramid” strategy is expected to work best when selection for resistance to 1 toxin does not cause cross-resistance to the other toxin. The most widely used pyramid is transgenic cotton producing Bt toxins Cry1Ac and Cry2Ab. Cross-resistance between these toxins was presumed unlikely because they bind to different larval midgut target sites. Previous results showed that laboratory selection with Cry1Ac caused little or no cross-resistance to Cry2A toxins in pink bollworm (Pectinophora gossypiella), a major cotton pest. We show here, however, that laboratory selection of pink bollworm with Cry2Ab caused up to 420-fold cross-resistance to Cry1Ac as well as 240-fold resistance to Cry2Ab. Inheritance of resistance to high concentrations of Cry2Ab was recessive. Larvae from a laboratory strain resistant to Cry1Ac and Cry2Ab in diet bioassays survived on cotton bolls producing only Cry1Ac, but not on cotton bolls producing both toxins. Thus, the asymmetrical cross-resistance seen here does not threaten the efficacy of pyramided Bt cotton against pink bollworm. Nonetheless, the results here and previous evidence indicate that cross-resistance occurs between Cry1Ac and Cry2Ab in some key cotton pests. Incorporating the potential effects of such cross-resistance in resistance management plans may help to sustain the efficacy of pyramided Bt crops.


PLOS ONE | 2012

Factors Affecting Population Dynamics of Maternally Transmitted Endosymbionts in Bemisia tabaci

Huipeng Pan; Xianchun Li; Daqing Ge; Shaoli Wang; Qingjun Wu; Wen Xie; Xiaoguo Jiao; Dong Chu; Baiming Liu; Baoyun Xu; Youjun Zhang

While every individual of Bemisia tabaci (Hemiptera: Aleyrodidae) harbors the primary symbiont (P-symbiont) Portiera, the infection frequencies of the six secondary symbionts (S-symbionts) including Hamiltonella, Arsenophonus, Cardinium, Wolbachia, Rickettsia and Fritschea vary greatly among different populations. To characterize the factors influencing the infection dynamics of the six S-symbionts in B. tabaci, gene-specific PCR were conducted to screen for the presence of the P-symbiont Portiera and the six S-symbionts in 61 (17 B and 44 Q biotypes) field populations collected from different plant species and locations in China. All individuals of the 61 populations hosted the P-symbiont Portiera, but none of them harbored Arsenophonus and Fritschea. The presence and infection rates of Hamiltonella, Cardinium, Rickettsia, Wolbachia and their co-infections Rickettsia + Hamiltonella (RH), Rickettsia + Cardinium (RC), Hamiltonella + Cardinium (HC) and Rickettsia + Hamiltonella + Cardinium (RHC) varied significantly among the 61 field populations; and the observed variations can be explained by biotypes, sexes, host plants and geographical locations of these field populations. Taken together, at least three factors including biotype, host plant and geographical location affect the infection dynamics of S-symbionts in B. tabaci.


Scientific Reports | 2015

Mis-splicing of the ABCC2 gene linked with Bt toxin resistance in Helicoverpa armigera

Yutao Xiao; Tao Zhang; Chenxi Liu; David G. Heckel; Xianchun Li; Bruce E. Tabashnik; Kongming Wu

Toxins from the bacterium Bacillus thuringiensis (Bt) are used widely for insect control in sprays and transgenic plants, but their efficacy is reduced when pests evolve resistance. Previous work showed that mutations in a gene encoding the transporter protein ABCC2 are linked with resistance to Bt toxins Cry1Ab, Cry1Ac or both in four species of Lepidoptera. Here we compared the ABCC2 gene of Helicoverpa armigera (HaABCC2) between susceptible strains and a laboratory-selected strain with >1,000-fold resistance to Cry1Ac relative its susceptible parent strain. We discovered a 73-base pair (bp) insertion in the cDNA of the resistant strain that generates a premature stop codon expected to yield a truncated ABCC2 protein. Sequencing of genomic DNA revealed that this insertion is an intron that is not spliced out because of a 6-bp deletion at its splicing site. Analysis of progeny from crosses revealed tight genetic linkage between HaABCC2 and resistance to Cry1Ac. These results provide the first evidence that mis-splicing of a gene encoding an ABCC2 protein confers resistance to a Bt toxin.


PLOS ONE | 2014

Alternative Splicing and Highly Variable Cadherin Transcripts Associated with Field-Evolved Resistance of Pink Bollworm to Bt Cotton in India

Jeffrey A. Fabrick; Jeyakumar Ponnuraj; Amar Singh; Raj K. Tanwar; Gopalan C. Unnithan; Alex J. Yelich; Xianchun Li; Yves Carrière; Bruce E. Tabashnik

Evolution of resistance by insect pests can reduce the benefits of insecticidal proteins from Bacillus thuringiensis (Bt) that are used extensively in sprays and transgenic crops. Despite considerable knowledge of the genes conferring insect resistance to Bt toxins in laboratory-selected strains and in field populations exposed to Bt sprays, understanding of the genetic basis of field-evolved resistance to Bt crops remains limited. In particular, previous work has not identified the genes conferring resistance in any cases where field-evolved resistance has reduced the efficacy of a Bt crop. Here we report that mutations in a gene encoding a cadherin protein that binds Bt toxin Cry1Ac are associated with field-evolved resistance of pink bollworm (Pectinophora gossypiella) in India to Cry1Ac produced by transgenic cotton. We conducted laboratory bioassays that confirmed previously reported resistance to Cry1Ac in pink bollworm from the state of Gujarat, where Bt cotton producing Cry1Ac has been grown extensively. Analysis of DNA from 436 pink bollworm from seven populations in India detected none of the four cadherin resistance alleles previously reported to be linked with resistance to Cry1Ac in laboratory-selected strains of pink bollworm from Arizona. However, DNA sequencing of pink bollworm derived from resistant and susceptible field populations in India revealed eight novel, severely disrupted cadherin alleles associated with resistance to Cry1Ac. For these eight alleles, analysis of complementary DNA (cDNA) revealed a total of 19 transcript isoforms, each containing a premature stop codon, a deletion of at least 99 base pairs, or both. Seven of the eight disrupted alleles each produced two or more different transcript isoforms, which implicates alternative splicing of messenger RNA (mRNA). This represents the first example of alternative splicing associated with field-evolved resistance that reduced the efficacy of a Bt crop.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Large-scale, spatially-explicit test of the refuge strategy for delaying insecticide resistance

Yves Carrière; Christa Ellers-Kirk; Kyle Hartfield; Guillaume Larocque; Ben A. Degain; Pierre Dutilleul; Timothy J. Dennehy; Stuart E. Marsh; David W. Crowder; Xianchun Li; Peter C. Ellsworth; Steven E. Naranjo; John C. Palumbo; Al Fournier; Larry Antilla; Bruce E. Tabashnik

The refuge strategy is used worldwide to delay the evolution of pest resistance to insecticides that are either sprayed or produced by transgenic Bacillus thuringiensis (Bt) crops. This strategy is based on the idea that refuges of host plants where pests are not exposed to an insecticide promote survival of susceptible pests. Despite widespread adoption of this approach, large-scale tests of the refuge strategy have been problematic. Here we tested the refuge strategy with 8 y of data on refuges and resistance to the insecticide pyriproxyfen in 84 populations of the sweetpotato whitefly (Bemisia tabaci) from cotton fields in central Arizona. We found that spatial variation in resistance to pyriproxyfen within each year was not affected by refuges of melons or alfalfa near cotton fields. However, resistance was negatively associated with the area of cotton refuges and positively associated with the area of cotton treated with pyriproxyfen. A statistical model based on the first 4 y of data, incorporating the spatial distribution of cotton treated and not treated with pyriproxyfen, adequately predicted the spatial variation in resistance observed in the last 4 y of the study, confirming that cotton refuges delayed resistance and treated cotton fields accelerated resistance. By providing a systematic assessment of the effectiveness of refuges and the scale of their effects, the spatially explicit approach applied here could be useful for testing and improving the refuge strategy in other crop–pest systems.


GigaScience | 2017

Genome sequencing of the sweetpotato whitefly Bemisia tabaci MED/Q

Wen Xie; Chunhai Chen; Zezhong Yang; Litao Guo; Xin Yang; Dan Wang; Ming Chen; Jinqun Huang; Yanan Wen; Yang Zeng; Yating Liu; Jixing Xia; Lixia Tian; Hongying Cui; Qingjun Wu; Shaoli Wang; Baoyun Xu; Xianchun Li; Xinqiu Tan; Murad Ghanim; Baoli Qiu; Huipeng Pan; Dong Chu; Helene Delatte; M.N. Maruthi; Feng Ge; Xueping Zhou; Xiaowei Wang; Fang-Hao Wan; Yuzhou Du

Abstract The sweetpotato whitefly Bemisia tabaci is a highly destructive agricultural and ornamental crop pest. It damages host plants through both phloem feeding and vectoring plant pathogens. Introductions of B. tabaci are difficult to quarantine and eradicate because of its high reproductive rates, broad host plant range, and insecticide resistance. A total of 791 Gb of raw DNA sequence from whole genome shotgun sequencing, and 13 BAC pooling libraries were generated by Illumina sequencing using different combinations of mate-pair and pair-end libraries. Assembly gave a final genome with a scaffold N50 of 437 kb, and a total length of 658 Mb. Annotation of repetitive elements and coding regions resulted in 265.0 Mb TEs (40.3%) and 20 786 protein-coding genes with putative gene family expansions, respectively. Phylogenetic analysis based on orthologs across 14 arthropod taxa suggested that MED/Q is clustered into a hemipteran clade containing A. pisum and is a sister lineage to a clade containing both R. prolixus and N. lugens. Genome completeness, as estimated using the CEGMA and Benchmarking Universal Single-Copy Orthologs pipelines, reached 96% and 79%. These MED/Q genomic resources lay a foundation for future ‘pan-genomic’ comparisons of invasive vs. noninvasive, invasive vs. invasive, and native vs. exotic Bemisia, which, in return, will open up new avenues of investigation into whitefly biology, evolution, and management.

Collaboration


Dive into the Xianchun Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xinzhi Ni

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kongming Wu

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jeffrey A. Fabrick

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge