Xianfeng Gao
University of Wisconsin–Milwaukee
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xianfeng Gao.
ACS Applied Materials & Interfaces | 2014
Xianfeng Gao; Jianyang Li; Dongsheng Guan; Chris Yuan
Sulfur nanoparticles wrapped with a conductive graphene framework was synthesized with a high sulfur loading through a scalable one-step process. The graphene-coated sulfur nanostructured composite, when used as cathode for lithium sulfur battery, shows a reversible capacity of 808 mAh g(-1) at a rate of 210 mA g(-1) and an average columbic efficiency of ∼98.3% over 100 cycles. It is found that graphene oxide (GO) with a porous structure offers flexible confinement function that helps prevent the loss of active materials, thus extending the cycling life of the electrode. Moreover, reduced graphene oxide provides a conductive network surrounding the sulfur particles, which facilitates both electron transport and ion transportation. This novel one-step, all-solution-based process is scalable and provides a promising approach for potential industrial applications.
Environmental Science & Technology | 2014
Bingbing Li; Xianfeng Gao; Jianyang Li; Chris Yuan
Although silicon nanowires (SiNW) have been widely studied as an ideal material for developing high-capacity lithium ion batteries (LIBs) for electric vehicles (EVs), little is known about the environmental impacts of such a new EV battery pack during its whole life cycle. This paper reports a life cycle assessment (LCA) of a high-capacity LIB pack using SiNW prepared via metal-assisted chemical etching as anode material. The LCA study is conducted based on the average U.S. driving and electricity supply conditions. Nanowastes and nanoparticle emissions from the SiNW synthesis are also characterized and reported. The LCA results show that over 50% of most characterized impacts are generated from the battery operations, while the battery anode with SiNW material contributes to around 15% of global warming potential and 10% of human toxicity potential. Overall the life cycle impacts of this new battery pack are moderately higher than those of conventional LIBs but could be actually comparable when considering the uncertainties and scale-up potential of the technology. These results are encouraging because they not only provide a solid base for sustainable development of next generation LIBs but also confirm that appropriate nanomanufacturing technologies could be used in sustainable product development.
ACS Applied Materials & Interfaces | 2015
Xianfeng Gao; Jianyang Li; Yuanyuan Xie; Dongsheng Guan; Chris Yuan
A multilayered structural silicon-reduced graphene oxide electrode with superior electrochemical performance was synthesized from bulk Si particles through inexpensive electroless etching and graphene self-encapsulating approach. The prepared composite electrode presents a stable charge-discharge performance with high rate, showing a reversible capacity of 2787 mAh g(-1) at a charging rate of 100 mA g(-1), and a stable capacity over 1000 mAh g(-1) was retained at 1 A g(-1) after 50 cycles with a high columbic efficiency of 99% during the whole cycling process. This superior performance can be attributed to its novel multilayered structure with porous Si particles encapsulated, which can effectively accommodate the large volume change during the lithiation process and provide increased electrical conductivity. This facile low-cost approach offers a promising route to develop an optimized carbon encapsulated Si electrode for future industrial applications.
Chemsuschem | 2015
Jingyi Zhang; Xianfeng Gao; Yelin Deng; Bingbing Li; Chris Yuan
Perovskite solar cells have attracted enormous attention in recent years due to their low cost and superior technical performance. However, the use of toxic metals, such as lead, in the perovskite dye and toxic chemicals in perovskite solar cell manufacturing causes grave concerns for its environmental performance. To understand and facilitate the sustainable development of perovskite solar cell technology from its design to manufacturing, a comprehensive environmental impact assessment has been conducted on titanium dioxide nanotube based perovskite solar cells by using an attributional life cycle assessment approach, from cradle to gate, with manufacturing data from our laboratory-scale experiments and upstream data collected from professional databases and the literature. The results indicate that the perovskite dye is the primary source of environmental impact, associated with 64.77% total embodied energy and 31.38% embodied materials consumption, contributing to more than 50% of the life cycle impact in almost all impact categories, although lead used in the perovskite dye only contributes to about 1.14% of the human toxicity potential. A comparison of perovskite solar cells with commercial silicon and cadmium-tellurium solar cells reveals that perovskite solar cells could be a promising alternative technology for future large-scale industrial applications.
Chemical Communications | 2014
Xianfeng Gao; Jianyang Li; Joel Baker; Yang Hou; Dongsheng Guan; Junhong Chen; Chris Yuan
Freestanding TiO2 nanotube array films are fabricated and first applied as electrodes in perovskite CH3NH3PbI3 sensitized solar cells. The device demonstrates improved light absorption with more than 90% of light absorbed in the whole visible range and a reduced charge recombination rate, leading to a significant improvement of the photocurrent and efficiency. This study suggests a promising way of improving the conversion efficiency of perovskite solar cells through novel electrodes.
RSC Advances | 2014
Dongsheng Guan; Jianyang Li; Xianfeng Gao; Chris Yuan
Amorphous and crystalline MoO3 coatings are synthesized on anodic TiO2 nanotube arrays by electrodeposition, as a self-standing, binder-free anode material in Li-ion batteries for enhancing the Li-ion insertion performance. The amorphous MoO3 layer is uniform and conformal with a thickness of 10 nm, and is converted into crystalline nanoparticles via thermal treatment. Our results show that both the coated TiO2 nanotubes deliver much higher areal capacities than bare nanotubes or a dense crystalline α-MoO3 film, while the crystalline α-MoO3 coating greatly increases the areal capacity of TiO2 nanotubes compared to the amorphous. The results are obtained at 1340 μA h cm−2 initial capacity for nanotubes with a crystalline coating, 977 μA h cm−2 for those with an amorphous coating and 342 μA h cm−2 for the bare ones. The significant enhancement is due to a combination of MoO3 with high specific capacity and TiO2 nanotube arrays with large surface area allowing uniform MoO3 deposition and rapid ionic transfer. Crystalline α-MoO3 is better than amorphous MoO3 and the coating medium is discussed in terms of chemical state, crystal defects, capacitive contributions and the charge–discharge kinetics in coated TiO2 nanotube electrodes.
RSC Advances | 2015
Dongsheng Guan; Jianyang Li; Xianfeng Gao; Chris Yuan
SnS2 nanoparticles and SnS2 nanoflake/CNTs composite are prepared by a low-cost facile hydrothermal method for their use in rechargeable Li-ion batteries. It is found that the presence of multi-walled CNTs during synthesis greatly affects the morphology of as-formed SnS2 nanostructures, and circinal single-layer and multilayer SnS2 nanoflakes enwrapped by CNTs are produced. The composite is further oxidized to porous SnO2 nanoflake/CNTs hybrid by annealing at 500 °C in air. The formation mechanism of SnS2/CNTs and SnO2/CNTs composites is examined. All the three materials are used as the anode in Li-ion batteries. The SnS2/CNTs composite delivers stronger cycling stability than the pure SnS2 anode. In tests the former exhibits excellent capacity retention of 91.5% at 100 mA g−1 over 50 cycles, while the latter displays 66.8%. The rate capability of SnS2/CNTs composite is much better than pure SnS2 as well. Redox reaction characteristics and Li-ion transfer kinetics at the two SnS2 anodes are studied by differential capacity plots and electrochemical impedance spectroscopy. It is discovered that the SnS2/CNTs composite with larger surface area allows faster Li-ion transfer kinetics, effective cushion of volume changes, and thus gains the improved Li-ion intercalation behaviours. The capacity of the tin-based anode can be further raised by transformation to a SnO2/CNTs hybrid that also delivers excellent rate and cycling performances.
Chemical Communications | 2014
Xianfeng Gao; Jianyang Li; Joel Baker; Yang Hou; Dongsheng Guan; Junhong Chen; Chris Yuan
Nano Energy | 2015
Jianyang Li; Yang Hou; Xianfeng Gao; Dongsheng Guan; Yuanyuan Xie; Junhong Chen; Chris Yuan
Journal of Power Sources | 2014
Dongsheng Guan; Jianyang Li; Xianfeng Gao; Chris Yuan