Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiang-Jun Lu is active.

Publication


Featured researches published by Xiang-Jun Lu.


Nature Protocols | 2008

3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures.

Xiang-Jun Lu; Wilma K. Olson

We present a set of protocols showing how to use the 3DNA suite of programs to analyze, rebuild and visualize three-dimensional nucleic-acid structures. The software determines a wide range of conformational parameters, including the identities and rigid-body parameters of interacting bases and base-pair steps, the nucleotides comprising helical fragments, the area of overlap of stacked bases and so on. The reconstruction of three-dimensional structure takes advantage of rigorously defined rigid-body parameters, producing rectangular block representations of the nucleic-acid bases and base pairs and all-atom models with approximate sugar–phosphate backbones. The visualization components create vector-based drawings and scenes that can be rendered as raster-graphics images, allowing for easy generation of publication-quality figures. The utility programs use geometric variables to control the view and scale of an object, for comparison of related structures. The commands run in seconds even for large structures. The software and related information are available at http://3dna.rutgers.edu/.


Nucleic Acids Research | 2009

Web 3DNA—a web server for the analysis, reconstruction, and visualization of three-dimensional nucleic-acid structures

Guohui Zheng; Xiang-Jun Lu; Wilma K. Olson

The w3DNA (web 3DNA) server is a user-friendly web-based interface to the 3DNA suite of programs for the analysis, reconstruction, and visualization of three-dimensional (3D) nucleic-acid-containing structures, including their complexes with proteins and other ligands. The server allows the user to determine a wide variety of conformational parameters in a given structure—such as the identities and rigid-body parameters of interacting nucleic-acid bases and base-pair steps, the nucleotides comprising helical fragments, etc. It is also possible to build 3D models of arbitrary nucleotide sequences and helical types, customized single-stranded and double-helical structures with user-defined base-pair parameters and sequences, and models of DNA ‘decorated’ at user-defined sites with proteins and other molecules. The visualization component offers unique, publication-quality representations of nucleic-acid structures, such as ‘block’ images of bases and base pairs and stacking diagrams of interacting nucleotides. The w3DNA web server, located at http://w3dna.rutgers.edu, is free and open to all users with no login requirement.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Hotspots of transcription factor colocalization in the genome of Drosophila melanogaster

Celine Moorman; Ling V. Sun; Junbai Wang; Elzo de Wit; Wendy Talhout; Lucas D. Ward; Frauke Greil; Xiang-Jun Lu; Kevin P. White; Harmen J. Bussemaker; Bas van Steensel

Regulation of gene expression is a highly complex process that requires the concerted action of many proteins, including sequence-specific transcription factors, cofactors, and chromatin proteins. In higher eukaryotes, the interplay between these proteins and their interactions with the genome still is poorly understood. We systematically mapped the in vivo binding sites of seven transcription factors with diverse physiological functions, five cofactors, and two heterochromatin proteins at ≈1-kb resolution in a 2.9 Mb region of the Drosophila melanogaster genome. Surprisingly, all tested transcription factors and cofactors show strongly overlapping localization patterns, and the genome contains many “hotspots” that are targeted by all of these proteins. Several control experiments show that the strong overlap is not an artifact of the techniques used. Colocalization hotspots are 1–5 kb in size, spaced on average by ≈50 kb, and preferentially located in regions of active transcription. We provide evidence that protein–protein interactions play a role in the hotspot association of some transcription factors. Colocalization hotspots constitute a previously uncharacterized type of feature in the genome of Drosophila, and our results provide insights into the general targeting mechanisms of transcription regulators in a higher eukaryote.


Journal of Biomolecular Structure & Dynamics | 1999

Overview of nucleic acid analysis programs.

Xiang-Jun Lu; Maria S. Babcock; Wilma K. Olson

We outline the mathematical distinctions among seven of the most popular computer programs currently used to analyze the spatial arrangements of bases and base pairs in nucleic acid helical structures. The schemes fall into three basic categories on the basis of their definitions of rotational parameters: matrix-based, projection-based, and combined matrix- and projection-based. The approaches also define and construct base and base-pair coordinate frames in a variety of ways. Despite these mathematical distinctions, the computed parameters from some programs are strongly correlated and directly comparable. By contrast, other programs which use identical methodologies sometimes yield very different results. The choice of reference frame rather than the mathematical formulation has the greater effect on calculated parameters. Any factor which influences the reference frame, such as fitting or not fitting standard bases to the experimentally derived coordinates, will have a noticeable effect on both complementary base pair and dimer step parameters.


PLOS ONE | 2008

Inferring condition-specific modulation of transcription factor activity in yeast through regulon-based analysis of genomewide expression

André Boorsma; Xiang-Jun Lu; Anna Zakrzewska; Frans M. Klis; Harmen J. Bussemaker

Background A key goal of systems biology is to understand how genomewide mRNA expression levels are controlled by transcription factors (TFs) in a condition-specific fashion. TF activity is frequently modulated at the post-translational level through ligand binding, covalent modification, or changes in sub-cellular localization. In this paper, we demonstrate how prior information about regulatory network connectivity can be exploited to infer condition-specific TF activity as a hidden variable from the genomewide mRNA expression pattern in the yeast Saccharomyces cerevisiae. Methodology/Principal Findings We first validate experimentally that by scoring differential expression at the level of gene sets or “regulons” comprised of the putative targets of a TF, we can accurately predict modulation of TF activity at the post-translational level. Next, we create an interactive database of inferred activities for a large number of TFs across a large number of experimental conditions in S. cerevisiae. This allows us to perform TF-centric analysis of the yeast regulatory network. Conclusions/Significance We analyze the degree to which the mRNA expression level of each TF is predictive of its regulatory activity. We also organize TFs into “co-modulation networks” based on their inferred activity profile across conditions, and find that this reveals functional and mechanistic relationships. Finally, we present evidence that the PAC and rRPE motifs antagonize TBP-dependent regulation, and function as core promoter elements governed by the transcription regulator NC2. Regulon-based monitoring of TF activity modulation is a powerful tool for analyzing regulatory network function that should be applicable in other organisms. Tools and results are available online at http://bussemakerlab.org/RegulonProfiler/.


Nucleic Acids Research | 2010

The RNA backbone plays a crucial role in mediating the intrinsic stability of the GpU dinucleotide platform and the GpUpA/GpA miniduplex

Xiang-Jun Lu; Wilma K. Olson; Harmen J. Bussemaker

The side-by-side interactions of nucleobases contribute to the organization of RNA, forming the planar building blocks of helices and mediating chain folding. Dinucleotide platforms, formed by side-by-side pairing of adjacent bases, frequently anchor helices against loops. Surprisingly, GpU steps account for over half of the dinucleotide platforms observed in RNA-containing structures. Why GpU should stand out from other dinucleotides in this respect is not clear from the single well-characterized H-bond found between the guanine N2 and the uracil O4 groups. Here, we describe how an RNA-specific H-bond between O2′(G) and O2P(U) adds to the stability of the GpU platform. Moreover, we show how this pair of oxygen atoms forms an out-of-plane backbone ‘edge’ that is specifically recognized by a non-adjacent guanine in over 90% of the cases, leading to the formation of an asymmetric miniduplex consisting of ‘complementary’ GpUpA and GpA subunits. Together, these five nucleotides constitute the conserved core of the well-known loop-E motif. The backbone-mediated intrinsic stabilities of the GpU dinucleotide platform and the GpUpA/GpA miniduplex plausibly underlie observed evolutionary constraints on base identity. We propose that they may also provide a reason for the extreme conservation of GpU observed at most 5′-splice sites.


Genome Biology | 2006

Detecting transcriptionally active regions using genomic tiling arrays

Gabor Halasz; Marinus F. van Batenburg; Joelle Perusse; Sujun Hua; Xiang-Jun Lu; Kevin P. White; Harmen J. Bussemaker

We have developed a method for interpreting genomic tiling array data, implemented as the program TranscriptionDetector. Probed loci expressed above background are identified by combining replicates in a way that makes minimal assumptions about the data. We performed medium-resolution Anopheles gambiae tiling array experiments and found extensive transcription of both coding and non-coding regions. Our method also showed improved detection of transcriptional units when applied to high-density tiling array data for ten human chromosomes.


Methods | 2009

New information content in RNA base pairing deduced from quantitative analysis of high-resolution structures.

Wilma K. Olson; Mauricio Esguerra; Yurong Xin; Xiang-Jun Lu

Non-canonical base pairs play important roles in organizing the complex three-dimensional folding of RNA. Here, we outline methodology developed both to analyze the spatial patterns of interacting base pairs in known RNA structures and to reconstruct models from the collective experimental information. We focus attention on the structural context and deformability of the seven pairing patterns found in greatest abundance in the helical segments in a set of well-resolved crystal structures, including (i-ii) the canonical A.U and G.C Watson-Crick base pairs, (iii) the G.U wobble pair, (iv) the sheared G.A pair, (v) the A.U Hoogsteen pair, (vi) the U.U wobble pair, and (vii) the G.A Watson-Crick-like pair. The non-canonical pairs stand out from the canonical associations in terms of apparent deformability, spanning a broader range of conformational states as measured by the six rigid-body parameters used to describe the spatial arrangements of the interacting bases, the root-mean-square deviations of the base-pair atoms, and the fluctuations in hydrogen-bonding geometry. The deformabilties, the modes of base-pair deformation, and the preferred sites of occurrence depend on sequence. We also characterize the positioning and overlap of the base pairs with respect to the base pairs that stack immediately above and below them in double-helical fragments. We incorporate the observed positions of the bases, base pairs, and intervening phosphorus atoms in models to predict the effects of the non-canonical interactions on overall helical structure.


Journal of the Chemical Society, Faraday Transactions | 1995

Influence of fluorine on aromatic interactions

Christopher A. Hunter; Xiang-Jun Lu; Gerardus M. Kapteijn; Gerard van Koten

Non-covalent interactions between aromatic ligands influence the conformations of metal complexes, and the system [M(OAr)2L2] has been used to investigate the difference between phenyl–phenyl, phenyl–pentafluorophenyl and pentafluorophenyl–pentafluorophenyl interactions. X-Ray crystal structures show that pentafluorophenyl groups adopt partially stacked orientations with the two aromatic rings close to parallel and with significant π overlap. In contrast, phenyl groups are skewed away from each other with only edge-to-face contacts. Phenyl–pentafluorophenyl interactions adopt a coplanar fully stacked geometry. These results have been rationalised on the basis of energy calculations (carried out blind) using a variety of empirical models for treating weak non-covalent interactions. The major cause of the different behaviour of the three systems lies in the electrostatic interactions between the π systems.


Journal of Biomolecular Structure & Dynamics | 1997

Construction of Double-helical DNA Structures Based on Dinucleotide Building Blocks

Christopher A. Hunter; Xiang-Jun Lu

We present a new method for building full 3-D structures of DNA sequences. A database of the conformational properties of dinucleotide steps has been compiled using X-ray crystal structures of oligonucleotides. The protocol uses these dinucleotides as building blocks to generate three dimensional structures of any required sequence in any required conformation.

Collaboration


Dive into the Xiang-Jun Lu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen C. Harvey

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrey Gorin

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

George J. Thomas

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harold D. Kim

Georgia Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge