Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiang-Qin Liu is active.

Publication


Featured researches published by Xiang-Qin Liu.


Journal of Biological Chemistry | 2004

Synthetic Two-piece and Three-piece Split Inteins for Protein trans-Splicing

Wenchang Sun; Jing Yang; Xiang-Qin Liu

Inteins are protein-intervening sequences that can self-excise and concomitantly splice together the flanking polypeptides. Two-piece split inteins capable of protein trans-splicing have been found in nature and engineered in laboratories, but they all have a similar split site corresponding to the endonuclease domain of the intein. Can inteins be split at other sites and do trans-splicing? After testing 13 split sites engineered into a Ssp DnaB mini-intein, we report the finding of three new split sites that each produced a two-piece split intein capable of protein trans-splicing. These three functional split sites are located in different loop regions between β-strands of the intein structure, and one of them is just 11 amino acids from the beginning of the intein. Because different inteins have similar structures and similar β-strands, these new split sites may be generalized to other inteins. We have also demonstrated for the first time that a three-piece split intein could function in protein trans-splicing. These findings have implications for intein structure-function, evolution, and uses in biotechnology.


Human Gene Therapy | 2008

Protein Trans-Splicing as a Means for Viral Vector-Mediated In Vivo Gene Therapy

Juan Li; Wunchang Sun; Bing Wang; Xiao Xiao; Xiang-Qin Liu

Inteins catalyze protein splicing in a fashion similar to how self-splicing introns catalyze RNA splicing. Splitinteins catalyze precise ligation of two separate polypeptides through trans-splicing in a highly specific manner. Here we report a method of using protein trans-splicing to circumvent the packaging size limit of gene therapy vectors. To demonstrate this method, we chose a large dystrophin gene and an adeno-associated viral (AAV) vector, which has a small packaging size. A highly functional 6.3-kb Becker-form dystrophin cDNA was broken into two pieces and modified by adding appropriate split-intein coding sequences, resulting in splitgenes sufficiently small for packaging in AAV vectors. The two split-genes, after codelivery into target cells, produced two polypeptides that spontaneously trans-spliced to form the expected Becker-form dystrophin protein in cell culture in vitro. Delivering the split-genes by AAV1 vectors into the muscle of a mouse model of Duchenne muscular dystrophy rendered therapeutic gene expression and benefits.


Journal of Biological Chemistry | 2011

Highly Efficient and More General cis- and trans-Splicing Inteins through Sequential Directed Evolution

Julia H. Appleby-Tagoe; Ilka V. Thiel; Yi Wang; Yanfei Wang; Henning D. Mootz; Xiang-Qin Liu

Background: Intein activity is often dependent on the immediately flanking extein residues. Results: Significantly improved inteins that are more promiscuous toward the flanking extein residues were generated using sequential directed evolution. Conclusion: Sequential directed evolution is an effective tool to improve and generalize intein functionality. Significance: Inteins being highly promiscuous toward the flanking extein residues will be important assets to improve intein-based biotechnical applications. Inteins are internal protein sequences that post-translationally self-excise and splice together the flanking sequences, the so-called exteins. Natural and engineered inteins have been used in many practical applications. However, inteins are often inefficient or inactive when placed in a non-native host protein and may require the presence of several amino acid residues of the native exteins, which will then remain as a potential scar in the spliced protein. Thus, more general inteins that overcome these limitations are highly desirable. Here we report sequential directed evolution as a new approach to produce inteins with such properties. Random mutants of the Ssp (Synechocystis sp. PCC 6803) DnaB mini-intein were inserted into the protein conferring kanamycin resistance at a site where the parent intein was inactive for splicing. The mutants selected for splicing activity were further improved by iterating the procedure for two more cycles at different positions in the same protein. The resulting improved inteins showed high activity in the positions of the first rounds of selection, in multiple new insertion sites, and in different proteins. One of these inteins, the M86 mutant, which accumulated 8 amino acid substitutions, was also biochemically characterized in an artificially split form with a chemically synthesized N-terminal intein fragment consisting of 11 amino acids. When compared with the unevolved split intein, it exhibited an ∼60-fold increased rate in the protein trans-splicing reaction and a Kd value for the interaction of the split intein fragments improved by an order of magnitude. Implications on the intein structure-function, practical application, and evolution are discussed.


Journal of Biological Chemistry | 2009

Novel Split Intein for trans-Splicing Synthetic Peptide onto C Terminus of Protein

Julia H. Appleby; Kaisong Zhou; Gerrit Volkmann; Xiang-Qin Liu

Conventional split inteins have been useful for trans-splicing between recombinant proteins, and an artificial S1 split intein is useful for adding synthetic peptide onto the N terminus of recombinant proteins. Here we have engineered a novel S11 split intein for trans-splicing synthetic peptide onto the C terminus of recombinant proteins. The C-intein of the S11 split intein is extremely small (6 amino acids (aa)); thus it can easily be produced together with a synthetic C-extein to be added to the C terminus of target proteins. The S11 intein was derived from the Ssp GyrB intein after deleting the homing endonuclease domain and splitting the remaining intein sequence near the C terminus, producing a 150-aa N-intein (IN) and a 6-aa C-intein (IC). Its trans-splicing activity was demonstrated first in Escherichia coli cells and then in vitro for trans-splicing between a synthetic peptide and a recombinant protein. The in vitro trans-splicing reaction exhibited a typical rate constant of (6.9 ± 2.2) × 10–5 s–1 and reached a high efficiency of ∼80%. This S11 split intein can be useful for adding any desirable chemical groups to the C terminus of a protein of interest, which may include modified and unnatural amino acids, biotin and fluorescent labels, and even drug molecules.


Plant Molecular Biology | 1993

Chloroplast Chlb Gene is Required for Light-Independent Chlorophyll Accumulation in Chlamydomonas-Reinhardtii

Xiang-Qin Liu; Hui Xu; Changzhi Huang

Light-independent chlorophyll synthesis occurs in some algae, lower plants, and gymnosperms, but not in angiosperms. We have identified a new chloroplast gene, chlB, that is required for the light-independent accumulation of chlorophyll in the green alga Chlamydomonas reinhardtii. The chlB gene was cloned, sequenced, and then disrupted by performing particle gun-mediated chloroplast transformation. The resulting homoplasmic mutant was unable to accumulate chlorophyll in the dark and thus exhibited a ‘yellow-in-the-dark’ phenotype. The chlB gene encodes a polypeptide of 688 amino acid residues, and is distinct from two previously characterized chloroplast genes (chlN and chlL) also required for light-independent chlorophyll accumulation in C. reinhardtii. Three unidentified open reading frames in chloroplast genomes of liverwort, black pine, and Chlamydomonas moewusii were also identified as chlB genes, based on their striking sequence similarities to the C. reinhardtii chlB gene. A chlB-like gene is absent in chloroplast genomes of tobacco and rice, consistent with the lack of light-independent chlorophyll synthesis in these plants. Polypeptides encoded by the chloroplast chlB genes also show significant sequence similarities with the bchB gene product of Rhodobacter capsulatus. Comparisons among the chloroplast chlB and the bacterial bchB gene products revealed five highly conserved sequence areas that are interspersed by four stretches of highly variable and probably insertional sequences.


PLOS ONE | 2012

Full-Length Minor Ampullate Spidroin Gene Sequence

Gefei Chen; Xiang-Qin Liu; Yunlong Zhang; Senzhu Lin; Zijiang Yang; Jan Johansson; Anna Rising; Qing Meng

Spider silk includes seven protein based fibers and glue-like substances produced by glands in the spiders abdomen. Minor ampullate silk is used to make the auxiliary spiral of the orb-web and also for wrapping prey, has a high tensile strength and does not supercontract in water. So far, only partial cDNA sequences have been obtained for minor ampullate spidroins (MiSps). Here we describe the first MiSp full-length gene sequence from the spider species Araneus ventricosus, using a multidimensional PCR approach. Comparative analysis of the sequence reveals regulatory elements, as well as unique spidroin gene and protein architecture including the presence of an unusually large intron. The spliced full-length transcript of MiSp gene is 5440 bp in size and encodes 1766 amino acid residues organized into conserved nonrepetitive N- and C-terminal domains and a central predominantly repetitive region composed of four units that are iterated in a non regular manner. The repeats are more conserved within A. ventricosus MiSp than compared to repeats from homologous proteins, and are interrupted by two nonrepetitive spacer regions, which have 100% identity even at the nucleotide level.


FEBS Letters | 2004

Prp8 intein in fungal pathogens: target for potential antifungal drugs

Xiang-Qin Liu; Jing Yang

Inteins are self‐splicing intervening sequences in proteins, and inteins of pathogenic organisms can be attractive drug targets. Here, we report an intein in important fungal pathogens including Aspergillus fumigatus, Aspergillus nidulans, Histoplasma capsulatum, and different serotypes of Cryptococcus neoformans. This intein is inside the extremely conserved and functionally essential Prp8 protein, and it varies in size from 170 aa in C. neoformans to 819 aa in A. fumigatus, which is caused by the presence or absence of an endonuclease domain and a putative tongs subdomain in the intein. Prp8 inteins of these organisms were demonstrated to do protein splicing in a recombinant protein in Escherichia coli. These findings revealed Prp8 inteins as attractive targets for potential antifungal drugs to be identified using existing selection and screening methods.


PLOS ONE | 2012

Recombinant Minimalist Spider Wrapping Silk Proteins Capable of Native-Like Fiber Formation

Lingling Xu; Jan K. Rainey; Qing Meng; Xiang-Qin Liu

Spider silks are desirable biomaterials characterized by high tensile strength, elasticity, and biocompatibility. Spiders produce different types of silks for different uses, although dragline silks have been the predominant focus of previous studies. Spider wrapping silk, made of the aciniform protein (AcSp1), has high toughness because of its combination of high elasticity and tensile strength. AcSp1 in Argiope trifasciata contains a 200-aa sequence motif that is repeated at least 14 times. Here, we produced in E. coli recombinant proteins consisting of only one to four of the 200-aa AcSp1 repeats, designated W1 to W4. We observed that purified W2, W3 and W4 proteins could be induced to form silk-like fibers by shear forces in a physiological buffer. The fibers formed by W4 were ∼3.4 µm in diameter and up to 10 cm long. They showed an average tensile strength of 115 MPa, elasticity of 37%, and toughness of 34 J cm−3. The smaller W2 protein formed fewer fibers and required a higher protein concentration to form fibers, whereas the smallest W1 protein did not form silk-like fibers, indicating that a minimum of two of the 200-aa repeats was required for fiber formation. Microscopic examinations revealed structural features indicating an assembly of the proteins into spherical structures, fibrils, and silk-like fibers. CD and Raman spectral analysis of protein secondary structures suggested a transition from predominantly α-helical in solution to increasingly β-sheet in fibers.


PLOS ONE | 2009

Protein C-terminal labeling and biotinylation using synthetic peptide and split-intein.

Gerrit Volkmann; Xiang-Qin Liu

Background Site-specific protein labeling or modification can facilitate the characterization of proteins with respect to their structure, folding, and interaction with other proteins. However, current methods of site-specific protein labeling are few and with limitations, therefore new methods are needed to satisfy the increasing need and sophistications of protein labeling. Methodology A method of protein C-terminal labeling was developed using a non-canonical split-intein, through an intein-catalyzed trans-splicing reaction between a protein and a small synthetic peptide carrying the desired labeling groups. As demonstrations of this method, three different proteins were efficiently labeled at their C-termini with two different labels (fluorescein and biotin) either in solution or on a solid surface, and a transferrin receptor protein was labeled on the membrane surface of live mammalian cells. Protein biotinylation and immobilization on a streptavidin-coated surface were also achieved in a cell lysate without prior purification of the target protein. Conclusions We have produced a method of site-specific labeling or modification at the C-termini of recombinant proteins. This method compares favorably with previous protein labeling methods and has several unique advantages. It is expected to have many potential applications in protein engineering and research, which include fluorescent labeling for monitoring protein folding, location, and trafficking in cells, and biotinylation for protein immobilization on streptavidin-coated surfaces including protein microchips. The types of chemical labeling may be limited only by the ability of chemical synthesis to produce the small C-intein peptide containing the desired chemical groups.


Protein Science | 2009

Controllable protein cleavages through intein fragment complementation

Gerrit Volkmann; Wenchang Sun; Xiang-Qin Liu

Intein‐based protein cleavages, if carried out in a controllable way, can be useful tools of recombinant protein purification, ligation, and cyclization. However, existing methods using contiguous inteins were often complicated by spontaneous cleavages, which could severely reduce the yield of the desired protein product. Here we demonstrate a new method of controllable cleavages without any spontaneous cleavage, using an artificial S1 split‐intein consisting of an 11‐aa N‐intein (IN) and a 144‐aa C‐intein (IC). In a C‐cleavage design, the IC sequence was embedded in a recombinant precursor protein, and the small IN was used as a synthetic peptide to trigger a cleavage at the C‐terminus of IC. In an N‐cleavage design, the short IN sequence was embedded in a recombinant precursor protein, and the separately produced IC protein was used to catalyze a cleavage at the N‐terminus of IN. These N‐ and C‐cleavages showed >95% efficiency, and both successfully avoided any spontaneous cleavage during expression and purification of the precursor proteins. The N‐cleavage design also revealed an unexpected and interesting structural flexibility of the IC protein. These findings significantly expand the effectiveness of intein‐based protein cleavages, and they also reveal important insights of intein structural flexibility and fragment complementation.

Collaboration


Dive into the Xiang-Qin Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge